Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merge Rcond_ and OperatorNorm_ into Lapack trait #347

Merged
merged 5 commits into from Oct 3, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
61 changes: 57 additions & 4 deletions lax/src/lib.rs
Expand Up @@ -93,23 +93,22 @@ pub mod eig;
pub mod eigh;
pub mod eigh_generalized;
pub mod least_squares;
pub mod opnorm;
pub mod qr;
pub mod rcond;
pub mod solve;
pub mod solveh;
pub mod svd;
pub mod svddc;

mod alloc;
mod opnorm;
mod rcond;
mod triangular;
mod tridiagonal;

pub use self::cholesky::*;
pub use self::flags::*;
pub use self::least_squares::LeastSquaresOwned;
pub use self::opnorm::*;
pub use self::rcond::*;
pub use self::svd::{SvdOwned, SvdRef};
pub use self::triangular::*;
pub use self::tridiagonal::*;
Expand All @@ -122,7 +121,7 @@ pub type Pivot = Vec<i32>;

#[cfg_attr(doc, katexit::katexit)]
/// Trait for primitive types which implements LAPACK subroutines
pub trait Lapack: OperatorNorm_ + Triangular_ + Tridiagonal_ + Rcond_ {
pub trait Lapack: Triangular_ + Tridiagonal_ {
/// Compute right eigenvalue and eigenvectors for a general matrix
fn eig(
calc_v: bool,
Expand Down Expand Up @@ -257,6 +256,48 @@ pub trait Lapack: OperatorNorm_ + Triangular_ + Tridiagonal_ + Rcond_ {

/// Solve linear equation $Ax = b$ using $U$ or $L$ calculated by [Lapack::cholesky]
fn solve_cholesky(l: MatrixLayout, uplo: UPLO, a: &[Self], b: &mut [Self]) -> Result<()>;

/// Estimates the the reciprocal of the condition number of the matrix in 1-norm.
///
/// `anorm` should be the 1-norm of the matrix `a`.
fn rcond(l: MatrixLayout, a: &[Self], anorm: Self::Real) -> Result<Self::Real>;

/// Compute norm of matrices
///
/// For a $n \times m$ matrix
/// $$
/// A = \begin{pmatrix}
/// a_{11} & \cdots & a_{1m} \\\\
/// \vdots & \ddots & \vdots \\\\
/// a_{n1} & \cdots & a_{nm}
/// \end{pmatrix}
/// $$
/// LAPACK can compute three types of norms:
///
/// - Operator norm based on 1-norm for its domain linear space:
/// $$
/// \Vert A \Vert_1 = \sup_{\Vert x \Vert_1 = 1} \Vert Ax \Vert_1
/// = \max_{1 \le j \le m } \sum_{i=1}^n |a_{ij}|
/// $$
/// where
/// $\Vert x\Vert_1 = \sum_{j=1}^m |x_j|$
/// is 1-norm for a vector $x$.
///
/// - Operator norm based on $\infty$-norm for its domain linear space:
/// $$
/// \Vert A \Vert_\infty = \sup_{\Vert x \Vert_\infty = 1} \Vert Ax \Vert_\infty
/// = \max_{1 \le i \le n } \sum_{j=1}^m |a_{ij}|
/// $$
/// where
/// $\Vert x\Vert_\infty = \max_{j=1}^m |x_j|$
/// is $\infty$-norm for a vector $x$.
///
/// - Frobenious norm
/// $$
/// \Vert A \Vert_F = \sqrt{\mathrm{Tr} \left(AA^\dagger\right)} = \sqrt{\sum_{i=1}^n \sum_{j=1}^m |a_{ij}|^2}
/// $$
///
fn opnorm(t: NormType, l: MatrixLayout, a: &[Self]) -> Self::Real;
}

macro_rules! impl_lapack {
Expand Down Expand Up @@ -418,6 +459,18 @@ macro_rules! impl_lapack {
use cholesky::*;
SolveCholeskyImpl::solve_cholesky(l, uplo, a, b)
}

fn rcond(l: MatrixLayout, a: &[Self], anorm: Self::Real) -> Result<Self::Real> {
use rcond::*;
let mut work = RcondWork::<$s>::new(l);
work.calc(a, anorm)
}

fn opnorm(t: NormType, l: MatrixLayout, a: &[Self]) -> Self::Real {
use opnorm::*;
let mut work = OperatorNormWork::<$s>::new(t, l);
work.calc(a)
}
}
};
}
Expand Down
60 changes: 37 additions & 23 deletions lax/src/opnorm.rs
@@ -1,27 +1,42 @@
//! Operator norms of matrices
//! Operator norm

use super::{AsPtr, NormType};
use crate::{layout::MatrixLayout, *};
use cauchy::*;

pub trait OperatorNorm_: Scalar {
fn opnorm(t: NormType, l: MatrixLayout, a: &[Self]) -> Self::Real;
pub struct OperatorNormWork<T: Scalar> {
pub ty: NormType,
pub layout: MatrixLayout,
pub work: Vec<MaybeUninit<T::Real>>,
}

macro_rules! impl_opnorm {
($scalar:ty, $lange:path) => {
impl OperatorNorm_ for $scalar {
fn opnorm(t: NormType, l: MatrixLayout, a: &[Self]) -> Self::Real {
let m = l.lda();
let n = l.len();
let t = match l {
MatrixLayout::F { .. } => t,
MatrixLayout::C { .. } => t.transpose(),
pub trait OperatorNormWorkImpl {
type Elem: Scalar;
fn new(t: NormType, l: MatrixLayout) -> Self;
fn calc(&mut self, a: &[Self::Elem]) -> <Self::Elem as Scalar>::Real;
}

macro_rules! impl_operator_norm {
($s:ty, $lange:path) => {
impl OperatorNormWorkImpl for OperatorNormWork<$s> {
type Elem = $s;

fn new(ty: NormType, layout: MatrixLayout) -> Self {
let m = layout.lda();
let work = match (ty, layout) {
(NormType::Infinity, MatrixLayout::F { .. })
| (NormType::One, MatrixLayout::C { .. }) => vec_uninit(m as usize),
_ => Vec::new(),
};
let mut work: Vec<MaybeUninit<Self::Real>> = if matches!(t, NormType::Infinity) {
vec_uninit(m as usize)
} else {
Vec::new()
OperatorNormWork { ty, layout, work }
}

fn calc(&mut self, a: &[Self::Elem]) -> <Self::Elem as Scalar>::Real {
let m = self.layout.lda();
let n = self.layout.len();
let t = match self.layout {
MatrixLayout::F { .. } => self.ty,
MatrixLayout::C { .. } => self.ty.transpose(),
};
unsafe {
$lange(
Expand All @@ -30,15 +45,14 @@ macro_rules! impl_opnorm {
&n,
AsPtr::as_ptr(a),
&m,
AsPtr::as_mut_ptr(&mut work),
AsPtr::as_mut_ptr(&mut self.work),
)
}
}
}
};
} // impl_opnorm!

impl_opnorm!(f64, lapack_sys::dlange_);
impl_opnorm!(f32, lapack_sys::slange_);
impl_opnorm!(c64, lapack_sys::zlange_);
impl_opnorm!(c32, lapack_sys::clange_);
}
impl_operator_norm!(c64, lapack_sys::zlange_);
impl_operator_norm!(c32, lapack_sys::clange_);
impl_operator_norm!(f64, lapack_sys::dlange_);
impl_operator_norm!(f32, lapack_sys::slange_);
117 changes: 78 additions & 39 deletions lax/src/rcond.rs
@@ -1,85 +1,124 @@
//! Reciprocal conditional number

use crate::{error::*, layout::MatrixLayout, *};
use cauchy::*;
use num_traits::Zero;

pub trait Rcond_: Scalar + Sized {
/// Estimates the the reciprocal of the condition number of the matrix in 1-norm.
///
/// `anorm` should be the 1-norm of the matrix `a`.
fn rcond(l: MatrixLayout, a: &[Self], anorm: Self::Real) -> Result<Self::Real>;
pub struct RcondWork<T: Scalar> {
pub layout: MatrixLayout,
pub work: Vec<MaybeUninit<T>>,
pub rwork: Option<Vec<MaybeUninit<T::Real>>>,
pub iwork: Option<Vec<MaybeUninit<i32>>>,
}

macro_rules! impl_rcond_real {
($scalar:ty, $gecon:path) => {
impl Rcond_ for $scalar {
fn rcond(l: MatrixLayout, a: &[Self], anorm: Self::Real) -> Result<Self::Real> {
let (n, _) = l.size();
let mut rcond = Self::Real::zero();
let mut info = 0;
pub trait RcondWorkImpl {
type Elem: Scalar;
fn new(l: MatrixLayout) -> Self;
fn calc(
&mut self,
a: &[Self::Elem],
anorm: <Self::Elem as Scalar>::Real,
) -> Result<<Self::Elem as Scalar>::Real>;
}

macro_rules! impl_rcond_work_c {
($c:ty, $con:path) => {
impl RcondWorkImpl for RcondWork<$c> {
type Elem = $c;

fn new(layout: MatrixLayout) -> Self {
let (n, _) = layout.size();
let work = vec_uninit(2 * n as usize);
let rwork = vec_uninit(2 * n as usize);
RcondWork {
layout,
work,
rwork: Some(rwork),
iwork: None,
}
}

let mut work: Vec<MaybeUninit<Self>> = vec_uninit(4 * n as usize);
let mut iwork: Vec<MaybeUninit<i32>> = vec_uninit(n as usize);
let norm_type = match l {
fn calc(
&mut self,
a: &[Self::Elem],
anorm: <Self::Elem as Scalar>::Real,
) -> Result<<Self::Elem as Scalar>::Real> {
let (n, _) = self.layout.size();
let mut rcond = <Self::Elem as Scalar>::Real::zero();
let mut info = 0;
let norm_type = match self.layout {
MatrixLayout::C { .. } => NormType::Infinity,
MatrixLayout::F { .. } => NormType::One,
};
unsafe {
$gecon(
$con(
norm_type.as_ptr(),
&n,
AsPtr::as_ptr(a),
&l.lda(),
&self.layout.lda(),
&anorm,
&mut rcond,
AsPtr::as_mut_ptr(&mut work),
AsPtr::as_mut_ptr(&mut iwork),
AsPtr::as_mut_ptr(&mut self.work),
AsPtr::as_mut_ptr(self.rwork.as_mut().unwrap()),
&mut info,
)
};
info.as_lapack_result()?;

Ok(rcond)
}
}
};
}
impl_rcond_work_c!(c64, lapack_sys::zgecon_);
impl_rcond_work_c!(c32, lapack_sys::cgecon_);

macro_rules! impl_rcond_work_r {
($r:ty, $con:path) => {
impl RcondWorkImpl for RcondWork<$r> {
type Elem = $r;

impl_rcond_real!(f32, lapack_sys::sgecon_);
impl_rcond_real!(f64, lapack_sys::dgecon_);
fn new(layout: MatrixLayout) -> Self {
let (n, _) = layout.size();
let work = vec_uninit(4 * n as usize);
let iwork = vec_uninit(n as usize);
RcondWork {
layout,
work,
rwork: None,
iwork: Some(iwork),
}
}

macro_rules! impl_rcond_complex {
($scalar:ty, $gecon:path) => {
impl Rcond_ for $scalar {
fn rcond(l: MatrixLayout, a: &[Self], anorm: Self::Real) -> Result<Self::Real> {
let (n, _) = l.size();
let mut rcond = Self::Real::zero();
fn calc(
&mut self,
a: &[Self::Elem],
anorm: <Self::Elem as Scalar>::Real,
) -> Result<<Self::Elem as Scalar>::Real> {
let (n, _) = self.layout.size();
let mut rcond = <Self::Elem as Scalar>::Real::zero();
let mut info = 0;
let mut work: Vec<MaybeUninit<Self>> = vec_uninit(2 * n as usize);
let mut rwork: Vec<MaybeUninit<Self::Real>> = vec_uninit(2 * n as usize);
let norm_type = match l {
let norm_type = match self.layout {
MatrixLayout::C { .. } => NormType::Infinity,
MatrixLayout::F { .. } => NormType::One,
};
unsafe {
$gecon(
$con(
norm_type.as_ptr(),
&n,
AsPtr::as_ptr(a),
&l.lda(),
&self.layout.lda(),
&anorm,
&mut rcond,
AsPtr::as_mut_ptr(&mut work),
AsPtr::as_mut_ptr(&mut rwork),
AsPtr::as_mut_ptr(&mut self.work),
AsPtr::as_mut_ptr(self.iwork.as_mut().unwrap()),
&mut info,
)
};
info.as_lapack_result()?;

Ok(rcond)
}
}
};
}

impl_rcond_complex!(c32, lapack_sys::cgecon_);
impl_rcond_complex!(c64, lapack_sys::zgecon_);
impl_rcond_work_r!(f64, lapack_sys::dgecon_);
impl_rcond_work_r!(f32, lapack_sys::sgecon_);