Skip to content

adrienpetralia/ApplianceDetectionBenchmark

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

75 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Appliance Detection Benchmark

Intro image

Appliance Detection Using Very Low-Frequency Smart Meter Time Series (ACM e-Energy '23)

GitHub GitHub issues

Abstract

In recent years, smart meters have been widely adopted by electricity suppliers to improve the management of the smart grid system. These meters usually collect energy consumption data at a very low frequency (every 30min), enabling utilities to bill customers more accurately. To provide more personalized recommendations, the next step is to detect the appliances owned by customers, which is a challenging problem, due to the very-low meter reading frequency. Even though the appliance detection problem can be cast as a time series classification problem, with many such classifiers having been proposed in the literature, no study has applied and compared them on this specific problem. This paper presents an in-depth evaluation and comparison of state-of-the-art time series classifiers applied to detecting the presence/absence of diverse appliances in very low-frequency smart meter data. We report results with five real datasets. We first study the impact of the detection quality of 13 different appliances using 30min sampled data, and we subsequently propose an analysis of the possible detection performance gain by using a higher meter reading frequency. The results indicate that the performance of current time series classifiers varies significantly. Some of them, namely deep learning-based classifiers, provide promising results in terms of accuracy (especially for certain appliances), even using 30min sampled data, and are scalable to the large smart meter time series collections of energy consumption data currently available to electricity suppliers. Nevertheless, our study shows that more work is needed in this area to further improve the accuracy of the proposed solutions.

References

Adrien Petralia, Philippe Charpentier, Paul Boniol, and Themis Palpanas. 2023. Appliance Detection Using Very Low-Frequency Smart Meter Time Series. In The 14th ACM International Conference on Future Energy Systems (e-Energy ’23), June 20–23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3575813.3595198

@inproceedings{10.1145/3575813.3595198,
  author    = {Adrien Petralia and
               Philippe Charpentier and
               Paul Boniol and
               Themis Palpanas},
  title     = {Appliance Detection Using Very Low-Frequency Smart Meter Time Series},
  booktitle = {{ACM International Conference on Future Energy Systems (e-Energy)}},
  year      = {2023}
}

Contributors

Prerequisites

Python version : >= Python 3.7

Overall, the required python packages are listed as follows:

Installation

Use pip to install all the required libraries listed in the requirements.txt file.

pip install -r requirements.txt 

Data

The data used in this project comes multiple sources:

  • CER smart meter dataset from the ISSDA archive.
  • REFIT smart meter dataset.
  • UKDALE smart meter dataset.
  • Private smart meter dataset provide by EDF (Electricité De France).

You may find more information on how to access the datasets in the data folder.

The following table summarzies some statistics of the abovementioned datasets:

Datasets number of TS 1-min sampled TS length 10-min sampled TS length 15-min sampled TS length 30-min sampled TS length
REFIT 9091 1440 144 96 48
UKDALE 4767 1440 144 96 48
CER 4225 / / / 25728
EDF 1 2611 / / / 17520
EDF 2 1553 / 26208 17427 8736

The following table summarizes the selected appliance detection cases through the five datasets; for each case, the table summarizes the number of time series available (♯TS) and the imbalance degree of the test set for the case (IB Ratio). A slash indicate that no data are available for this case/dataset.

Appliance case REFIT (#TS, IB ratio) UKDALE (#TS, IB ratio) CER (#TS, IB ratio) EDF 1 (#TS, IB ratio) EDF 2 (#TS, IB ratio)
Desktop Computer 5190 (0.56) / 3286 (0.47) 1402 (0.38) 3740 (0.62)
Television 1134 (0.92) / / / /
Cooker / / 1682 (0.76) / /
Kettle 4790 (0.72) 1222 (0.84) / / /
Microwave 7434 (0.55) 1678 (0.77) / 342 (0.91) /
Electric Oven / / / 510 (0.85) 1152 (0.91)
Dishwasher 7798 (0.44) 2378 (0.32) 2350 (0.66) 224 (0.93) 2846 (0.75)
Tumble Dryer 3466 (0.22) / 2214 (0.68) 1534 (0.41) 3470 (0.42)
Washing Machine 7422 (0.54) 2380 (0.38) / / /
Water Heater / / 3070 (0.56) 1336 (0.66) 548 (0.86)
Electric Heater / / 1348 (0.19) 1624 (0.58) 1538 (0.56)
Convector / / / 506 (0.69) /
Electric Vehicule / / / 140 (0.3) /

Results

In the following table, we summarize our benchmark evaluation for each appliance detection case. The classification methods used in our benchmark are listed in the following taxonomy (only the methods in blue were experimentally evaluated):

Taxonomy of classification methods

30min accuracy detection results

Desktop Computer Detection Accuracy (F1-Macro score)

Datasets Arsenal MiniRocket Rocket ConvNet ResNet ResNetAtt InceptionTime BOSS TSF RISE KNNeucli Avg score
CER 0.618 0.617 0.606 0.602 0.614 0.530 0.608 0.516 0.580 0.586 0.491 0.579
EDF 1 0.571 0.564 0.570 0.489 0.560 0.459 0.555 0.491 0.533 0.543 0.469 0.528
EDF 2 0.603 0.576 0.582 0.579 0.620 0.514 0.601 0.519 0.570 0.592 0.520 0.571
REFIT 0.697 0.683 0.674 0.715 0.740 / 0.623 0.542 0.525 0.600 0.548 0.635

Television Detection Accuracy (F1-Macro score)

Datasets Arsenal MiniRocket Rocket ConvNet ResNet ResNetAtt InceptionTime BOSS TSF RISE KNNeucli Avg score
REFIT 0.656 0.647 0.645 0.695 0.699 / 0.718 0.485 0.737 0.664 0.513 0.646

Cooker Detection Accuracy (F1-Macro score)

Datasets Arsenal MiniRocket Rocket ConvNet ResNet ResNetAtt InceptionTime BOSS TSF RISE KNNeucli Avg score
CER 0.680 0.673 0.676 0.661 0.689 0.541 0.710 0.526 0.566 0.584 0.440 0.613

Kettle Detection Accuracy (F1-Macro score)

Datasets Arsenal MiniRocket Rocket ConvNet ResNet ResNetAtt InceptionTime BOSS TSF RISE KNNeucli Avg score
REFIT 0.368 0.376 0.381 0.522 0.477 / 0.415 0.536 0.359 0.428 0.421 0.428
UKDALE 0.540 0.502 0.522 0.428 0.432 / 0.583 0.504 0.353 0.442 0.446 0.475

Microwave Detection Accuracy (F1-Macro score)

Datasets Arsenal MiniRocket Rocket ConvNet ResNet ResNetAtt InceptionTime BOSS TSF RISE KNNeucli Avg score
REFIT 0.656 0.598 0.588 0.745 0.679 / 0.673 0.563 0.540 0.717 0.529 0.629
UKDALE 0.446 0.498 0.460 0.532 0.526 / 0.541 0.435 0.459 0.430 0.378 0.471
EDF 1 0.480 0.471 0.475 0.534 0.510 0.409 0.474 0.454 0.400 0.429 0.457 0.463

Electric Oven Detection Accuracy (F1-Macro score)

Datasets Arsenal MiniRocket Rocket ConvNet ResNet ResNetAtt InceptionTime BOSS TSF RISE KNNeucli Avg score
EDF 1 0.513 0.498 0.499 0.512 0.512 0.472 0.523 0.506 0.429 0.497 0.437 0.491
EDF 2 0.557 0.584 0.553 0.571 0.562 0.560 0.576 0.495 0.459 0.491 0.397 0.528

Dishwasher Detection Accuracy (F1-Macro score)

Datasets Arsenal MiniRocket Rocket ConvNet ResNet ResNetAtt InceptionTime BOSS TSF RISE KNNeucli Avg score
REFIT 0.650 0.599 0.619 0.580 0.605 / 0.590 0.557 0.519 0.584 0.515 0.582
UKDALE 0.458 0.465 0.465 0.419 0.380 / 0.384 0.399 0.429 0.554 0.525 0.448
CER 0.699 0.720 0.700 0.730 0.728 0.594 0.737 0.586 0.609 0.648 0.488 0.658
EDF 1 0.454 0.441 0.450 0.528 0.522 0.383 0.535 0.430 0.418 0.421 0.211 0.436
EDF 2 0.753 0.760 0.741 0.799 0.801 0.585 0.835 0.596 0.603 0.600 0.512 0.690

Tumble Dryer Detection Accuracy (F1-Macro score)

Datasets Arsenal MiniRocket Rocket ConvNet ResNet ResNetAtt InceptionTime BOSS TSF RISE KNNeucli Avg score
REFIT 0.493 0.503 0.502 0.468 0.448 / 0.441 0.506 0.416 0.434 0.461 0.467
CER 0.634 0.641 0.628 0.606 0.612 0.550 0.623 0.549 0.578 0.602 0.474 0.591
EDF 1 0.619 0.578 0.607 0.624 0.607 0.475 0.636 0.550 0.537 0.563 0.487 0.571
EDF 2 0.733 0.714 0.714 0.757 0.769 0.475 0.769 0.560 0.593 0.681 0.493 0.660

Waching Machine Detection Accuracy (F1-Macro score)

Datasets Arsenal MiniRocket Rocket ConvNet ResNet ResNetAtt InceptionTime BOSS TSF RISE KNNeucli Avg score
REFIT 0.605 0.572 0.592 0.581 0.586 / 0.614 0.520 0.562 0.557 0.529 0.572
UKDALE 0.475 0.505 0.478 0.535 0.530 / 0.454 0.408 0.581 0.549 0.509 0.502

Water Heater Detection Accuracy (F1-Macro score)

Datasets Arsenal MiniRocket Rocket ConvNet ResNet ResNetAtt InceptionTime BOSS TSF RISE KNNeucli Avg score
CER 0.625 0.613 0.613 0.610 0.612 0.465 0.637 0.527 0.596 0.584 0.462 0.577
EDF 1 0.835 0.821 0.827 0.814 0.828 0.768 0.841 0.670 0.713 0.805 0.591 0.774
EDF 2 0.733 0.685 0.724 0.731 0.685 0.591 0.759 0.658 0.580 0.666 0.617 0.675

Electric Heater Detection Accuracy (F1-Macro score)

Datasets Arsenal MiniRocket Rocket ConvNet ResNet ResNetAtt InceptionTime BOSS TSF RISE KNNeucli Avg score
CER 0.522 0.532 0.514 0.533 0.508 0.477 0.565 0.459 0.492 0.527 0.397 0.502
EDF 1 0.784 0.783 0.789 0.777 0.778 0.713 0.800 0.643 0.758 0.777 0.638 0.749
EDF 2 0.591 0.566 0.578 0.626 0.637 0.527 0.648 0.497 0.591 0.605 0.451 0.574

Convector/Heat Pump Detection Accuracy (F1-Macro score)

Datasets Arsenal MiniRocket Rocket ConvNet ResNet ResNetAtt InceptionTime BOSS TSF RISE KNNeucli Avg score
EDF 1 0.632 0.622 0.631 0.597 0.638 0.534 0.651 0.539 0.556 0.625 0.467 0.590

Electric Vehicule Detection Accuracy (F1-Macro score)

Datasets Arsenal MiniRocket Rocket ConvNet ResNet ResNetAtt InceptionTime BOSS TSF RISE KNNeucli Avg score
EDF 1 0.689 0.730 0.670 0.681 0.699 0.553 0.720 0.541 0.456 0.725 0.556 0.638

Acknowledgments

Work supported by EDF R&D and ANRT French program.