Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove ManagedPyRef #930

Merged
merged 1 commit into from
May 16, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Expand Up @@ -5,6 +5,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/)
and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.html).

## [Unreleased]
### Removed
- Remove `ManagedPyRef` (unused, and needs specialization) [#930](https://github.com/PyO3/pyo3/pull/930)

## [0.10.0]
### Added
Expand Down
2 changes: 0 additions & 2 deletions src/conversion.rs
Expand Up @@ -87,8 +87,6 @@ pub trait ToPyObject {
/// all [ToPyObject] and creates a new object using [ToPyObject::to_object],
/// while the fast one is only implemented for AsPyPointer (we know
/// that every AsPyPointer is also ToPyObject) and uses [AsPyPointer::as_ptr()]
///
/// This trait should eventually be replaced with [ManagedPyRef](crate::ManagedPyRef).
pub trait ToBorrowedObject: ToPyObject {
/// Converts self into a Python object and calls the specified closure
/// on the native FFI pointer underlying the Python object.
Expand Down
134 changes: 1 addition & 133 deletions src/instance.rs
Expand Up @@ -323,108 +323,9 @@ where
}
}

/// Reference to a converted [ToPyObject].
///
/// Many methods want to take anything that can be converted into a Python object. This type
/// takes care of both types types that are already Python object (i.e. implement
/// [AsPyPointer]) and those that don't (i.e. [ToPyObject] types).
/// For the [AsPyPointer] types, we just use the borrowed pointer, which is a lot faster
/// and simpler than creating a new extra object. The remaning [ToPyObject] types are
/// converted to Python objects, the owned pointer is stored and decref'd on drop.
///
/// # Example
///
/// ```
/// use pyo3::ffi;
/// use pyo3::{ToPyObject, AsPyPointer, PyNativeType, ManagedPyRef};
/// use pyo3::types::{PyDict, PyAny};
///
/// pub fn get_dict_item<'p>(dict: &'p PyDict, key: &impl ToPyObject) -> Option<&'p PyAny> {
/// let key = ManagedPyRef::from_to_pyobject(dict.py(), key);
/// unsafe {
/// dict.py().from_borrowed_ptr_or_opt(ffi::PyDict_GetItem(dict.as_ptr(), key.as_ptr()))
/// }
/// }
/// ```
#[repr(transparent)]
pub struct ManagedPyRef<'p, T: ToPyObject + ?Sized> {
data: *mut ffi::PyObject,
data_type: PhantomData<T>,
_py: Python<'p>,
}

/// This should eventually be replaced with a generic `IntoPy` trait impl by figuring
/// out the correct lifetime annotation to make the compiler happy.
impl<'p, T: ToPyObject> ManagedPyRef<'p, T> {
pub fn from_to_pyobject(py: Python<'p>, to_pyobject: &T) -> Self {
to_pyobject.to_managed_py_ref(py)
}
}

impl<'p, T: ToPyObject> AsPyPointer for ManagedPyRef<'p, T> {
fn as_ptr(&self) -> *mut ffi::PyObject {
self.data
}
}

/// Helper trait to choose the right implementation for [ManagedPyRef].
pub trait ManagedPyRefDispatch: ToPyObject {
/// Optionally converts into a Python object and stores the pointer to the python heap.
fn to_managed_py_ref<'p>(&self, py: Python<'p>) -> ManagedPyRef<'p, Self>;

/// Dispatch over a xdecref and a noop drop impl
fn drop_impl(borrowed: &mut ManagedPyRef<Self>);
}

/// Case 1: It's a Rust object which still needs to be converted to a Python object.
/// This means we're storing the owned pointer that into_ptr() has given us
/// and therefore need to xdecref when we're done.
///
/// Note that the actual implementations are part of the trait declaration to avoid
/// a specialization error
impl<T: ToPyObject + ?Sized> ManagedPyRefDispatch for T {
/// Contains the case 1 impl (with to_object) to avoid a specialization error
default fn to_managed_py_ref<'p>(&self, py: Python<'p>) -> ManagedPyRef<'p, Self> {
ManagedPyRef {
data: self.to_object(py).into_ptr(),
data_type: PhantomData,
_py: py,
}
}

/// Contains the case 1 impl (decref) to avoid a specialization error
default fn drop_impl(borrowed: &mut ManagedPyRef<Self>) {
unsafe { ffi::Py_DECREF(borrowed.data) };
}
}

/// Case 2: It's an object on the Python heap, we're just storing a borrowed pointer.
/// The object we're getting is an owned pointer, it might have it's own drop impl.
impl<T: ToPyObject + AsPyPointer + ?Sized> ManagedPyRefDispatch for T {
/// Use AsPyPointer to copy the pointer and store it as borrowed pointer
fn to_managed_py_ref<'p>(&self, py: Python<'p>) -> ManagedPyRef<'p, Self> {
ManagedPyRef {
data: self.as_ptr(),
data_type: PhantomData,
_py: py,
}
}

/// We have a borrowed pointer, so nothing to do here
fn drop_impl(_: &mut ManagedPyRef<T>) {}
}

impl<'p, T: ToPyObject + ?Sized> Drop for ManagedPyRef<'p, T> {
/// Uses the internal [ManagedPyRefDispatch] trait to get the right drop impl without causing
/// a specialization error
fn drop(&mut self) {
ManagedPyRefDispatch::drop_impl(self);
}
}

#[cfg(test)]
mod test {
use super::{ManagedPyRef, Py};
use super::Py;
use crate::ffi;
use crate::types::PyDict;
use crate::{AsPyPointer, Python};
Expand All @@ -439,37 +340,4 @@ mod test {
};
assert_eq!(unsafe { ffi::Py_REFCNT(dict.as_ptr()) }, 1);
}

#[test]
fn borrowed_py_ref_with_to_pointer() {
let gil = Python::acquire_gil();
let py = gil.python();
let native = PyDict::new(py);
let ref_count = unsafe { ffi::Py_REFCNT(native.as_ptr()) };
let borrowed = ManagedPyRef::from_to_pyobject(py, native);
assert_eq!(native.as_ptr(), borrowed.data);
assert_eq!(ref_count, unsafe { ffi::Py_REFCNT(borrowed.data) });
drop(borrowed);
assert_eq!(ref_count, unsafe { ffi::Py_REFCNT(native.as_ptr()) });
}

#[test]
fn borrowed_py_ref_with_to_object() {
let gil = Python::acquire_gil();
let py = gil.python();
let convertible = (1, 2, 3);
let borrowed = ManagedPyRef::from_to_pyobject(py, &convertible);
let ptr = borrowed.data;
// The refcountwould become 0 after dropping, which means the gc can free the pointer
// and getting the refcount would be UB. This incref ensures that it remains 1
unsafe {
ffi::Py_INCREF(ptr);
}
assert_eq!(2, unsafe { ffi::Py_REFCNT(ptr) });
drop(borrowed);
assert_eq!(1, unsafe { ffi::Py_REFCNT(ptr) });
unsafe {
ffi::Py_DECREF(ptr);
}
}
}
2 changes: 1 addition & 1 deletion src/lib.rs
Expand Up @@ -140,7 +140,7 @@ pub use crate::conversion::{
};
pub use crate::err::{PyDowncastError, PyErr, PyErrArguments, PyErrValue, PyResult};
pub use crate::gil::{GILGuard, GILPool};
pub use crate::instance::{AsPyRef, ManagedPyRef, Py, PyNativeType};
pub use crate::instance::{AsPyRef, Py, PyNativeType};
pub use crate::object::PyObject;
pub use crate::pycell::{PyCell, PyRef, PyRefMut};
pub use crate::pyclass::PyClass;
Expand Down