Skip to content
This repository has been archived by the owner on Apr 10, 2022. It is now read-only.

Latest commit

 

History

History
1081 lines (905 loc) · 40.9 KB

except_star.md

File metadata and controls

1081 lines (905 loc) · 40.9 KB

Exception Groups and except*

Abstract

This PEP proposes language extensions that allow programs to raise and handle multiple unrelated exceptions simultaneously:

  • A new standard exception type, the ExceptionGroup, which represents a group of unrelated exceptions being propagated together.

  • A new syntax except* for handling ExceptionGroups.

Motivation

The interpreter is currently able to propagate at most one exception at a time. The chaining features introduced in PEP 3134 link together exceptions that are related to each other as the cause or context, but there are situations where multiple unrelated exceptions need to be propagated together as the stack unwinds. Several real world use cases are listed below.

  • Concurrent errors. Libraries for async concurrency provide APIs to invoke multiple tasks and return their results in aggregate. There isn't currently a good way for such libraries to handle situations where multiple tasks raise exceptions. The Python standard library's asyncio.gather() function provides two options: raise the first exception, or return the exceptions in the results list. The Trio library has a MultiError exception type which it raises to report a collection of errors. Work on this PEP was initially motivated by the difficulties in handling MultiErrors, which are detailed in a design document for an improved version, MultiError2. That document demonstrates how difficult it is to create an effective API for reporting and handling multiple errors without the language changes we are proposing.

  • Multiple failures when retrying an operation. The Python standard library's socket.create_connection may attempt to connect to different addresses, and if all attempts fail it needs to report that to the user. It is an open issue how to aggregate these errors, particularly when they are different [Python issue 29980].

  • Multiple user callbacks fail. Python's atexit.register() allows users to register functions that are called on system exit. If any of them raise exceptions, only the last one is reraised, but it would be better to reraised all of them together [atexit documentation]. Similarly, the pytest library allows users to register finalizers which are executed at teardown. If more than one of these finalizers raises an exception, only the first is reported to the user. This can be improved with ExceptionGroups, as explained in this issue by pytest developer Ran Benita [Pytest issue 8217]

  • Multiple errors in a complex calculation. The Hypothesis library performs automatic bug reduction (simplifying code that demonstrates a bug). In the process it may find variations that generate different errors, and (optionally) reports all of them [Hypothesis documentation]. An ExceptionGroup mechanism as we are proposing here can resolve some of the difficulties with debugging that are mentioned in the link above, and which are due to the loss of context/cause information (communicated by Hypothesis Core Developer Zac Hatfield-Dodds).

  • Errors in wrapper code. The Python standard library's tempfile.TemporaryDirectory context manager had an issue where an exception raised during cleanup in __exit__ effectively masked an exception that the user's code raised inside the context manager scope. While the user's exception was chained as the context of the cleanup error, it was not caught by the user's except clause [Python issue 40857]. The issue was resolved by making the cleanup code ignore errors, thus sidestepping the multiple exception problem. With the features we propose here, it would be possible for __exit__ to raise an ExceptionGroup containing its own errors as well as the user's errors as unrelated errors, and this would allow the user to catch their own exceptions by their types.

Rationale

Grouping several exceptions together can be done without changes to the language, simply by creating a container exception type. Trio is an example of a library that has made use of this technique in its MultiError type. However, such approaches require calling code to catch the container exception type, and then inspect it to determine the types of errors that had occurred, extract the ones it wants to handle and reraise the rest.

Changes to the language are required in order to extend support for ExceptionGroups in the style of existing exception handling mechanisms. At the very least we would like to be able to catch an ExceptionGroup only if it contains an exception type that we choose to handle. Exceptions of other types in the same ExceptionGroup need to be automatically reraised, otherwise it is too easy for user code to inadvertently swallow exceptions that it is not handling.

The purpose of this PEP, then, is to add the except* syntax for handling ExceptionGroups in the interpreter, which in turn requires that ExceptionGroup is added as a builtin type. The semantics of handling ExceptionGroups are not backwards compatible with the current exception handling semantics, so we are not proposing to modify the behavior of the except keyword but rather to add the new except* syntax.

Specification

ExceptionGroup

The new builtin exception type, ExceptionGroup is a subclass of BaseException, so it is assignable to Exception.__cause__ and Exception.__context__, and can be raised and handled as any exception with raise ExceptionGroup(...) and try: ... except ExceptionGroup: ....

Its constructor takes two positional-only parameters: a message string and a sequence of the nested exceptions, for example: ExceptionGroup('issues', [ValueError('bad value'), TypeError('bad type')]).

The ExceptionGroup class exposes these parameters in the fields message and errors. A nested exception can also be an ExceptionGroup so the class represents a tree of exceptions, where the leaves are plain exceptions and each internal node represent a time at which the program grouped some unrelated exceptions into a new ExceptionGroup and raised them together. The ExceptionGroup class is final, i.e., it cannot be subclassed.

The ExceptionGroup.subgroup(condition) method gives us a way to obtain an ExceptionGroup that has the same metadata (cause, context, traceback) as the original group, and the same nested structure of ExceptionGroups, but contains only those exceptions for which the condition is true:

>>> eg = ExceptionGroup("one",
...                     [TypeError(1),
...                      ExceptionGroup("two",
...                                     [TypeError(2), ValueError(3)]),
...                      ExceptionGroup("three",
...                                     [OSError(4)])
...                     ])
>>> traceback.print_exception(eg)
ExceptionGroup: one
   ------------------------------------------------------------
   TypeError: 1
   ------------------------------------------------------------
   ExceptionGroup: two
      ------------------------------------------------------------
      TypeError: 2
      ------------------------------------------------------------
      ValueError: 3
   ------------------------------------------------------------
   ExceptionGroup: three
      ------------------------------------------------------------
      OSError: 4
>>> type_errors = eg.subgroup(lambda e: isinstance(e, TypeError))
>>> traceback.print_exception(type_errors)
ExceptionGroup: one
   ------------------------------------------------------------
   TypeError: 1
   ------------------------------------------------------------
   ExceptionGroup: two
      ------------------------------------------------------------
      TypeError: 2
>>>

Empty nested ExceptionGroups are omitted from the result, as in the case of ExceptionGroup("three") in the example above. The original eg is unchanged by subgroup, but the value returned is not necessarily a full new copy. Leaf exceptions are not copied, nor are ExceptionGroups which are fully contained in the result. When it is necessary to partition an ExceptionGroup because the condition holds for some, but not all of its contained exceptions, a new ExceptionGroup is created but the __cause__, __context__ and __traceback__ fields are copied by reference, so are shared with the original eg.

If both the subgroup and its complement are needed, the ExceptionGroup.split(condition) method can be used:

>>> type_errors, other_errors = eg.split(lambda e: isinstance(e, TypeError))
>>> traceback.print_exception(type_errors)
ExceptionGroup: one
   ------------------------------------------------------------
   TypeError: 1
   ------------------------------------------------------------
   ExceptionGroup: two
      ------------------------------------------------------------
      TypeError: 2
>>> traceback.print_exception(other_errors)
ExceptionGroup: one
   ------------------------------------------------------------
   ExceptionGroup: two
      ------------------------------------------------------------
      ValueError: 3
   ------------------------------------------------------------
   ExceptionGroup: three
      ------------------------------------------------------------
      OSError: 4
>>>

If a split is trivial (one side is empty), then None is returned for the other side:

>>> other_errors.split(lambda e: isinstance(e, SyntaxError))
(None, ExceptionGroup('one', [ExceptionGroup('two', [ValueError(3)]), ExceptionGroup('three', [OSError(4)])]))

Since splitting by exception type is a very common use case, subgroup and split can take an exception type or tuple of exception types and treat it as a shorthand for matching that type: eg.split(T) divides eg into the subgroup of leaf exceptions that match the type T, and the subgroup of those that do not (using the same check as except for a match).

The Traceback of an ExceptionGroup

For regular exceptions, the traceback represents a simple path of frames, from the frame in which the exception was raised to the frame in which it was caught or, if it hasn't been caught yet, the frame that the program's execution is currently in. The list is constructed by the interpreter, which appends any frame from which it exits to the traceback of the 'current exception' if one exists. To support efficient appends, the links in a traceback's list of frames are from the oldest to the newest frame. Appending a new frame is then simply a matter of inserting a new head to the linked list referenced from the exception's __traceback__ field. Crucially, the traceback's frame list is immutable in the sense that frames only need to be added at the head, and never need to be removed.

We do not need to make any changes to this data structure. The __traceback__ field of the ExceptionGroup instance represents the path that the contained exceptions travelled through together after being joined into the ExceptionGroup, and the same field on each of the nested exceptions represents the path through which this exception arrived at the frame of the merge.

What we do need to change is any code that interprets and displays tracebacks, because it now needs to continue into tracebacks of nested exceptions, as in the following example:

>>> def f(v):
...     try:
...         raise ValueError(v)
...     except ValueError as e:
...         return e
...
>>> try:
...     raise ExceptionGroup("one", [f(1)])
... except ExceptionGroup as e:
...     eg1 = e
...
>>> try:
...     raise ExceptionGroup("two", [f(2), eg1])
... except ExceptionGroup as e:
...     eg2 = e
...
>>> import traceback
>>> traceback.print_exception(eg2)
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
ExceptionGroup: two
   ------------------------------------------------------------
   Traceback (most recent call last):
     File "<stdin>", line 3, in f
   ValueError: 2
   ------------------------------------------------------------
   Traceback (most recent call last):
     File "<stdin>", line 2, in <module>
   ExceptionGroup: one
      ------------------------------------------------------------
      Traceback (most recent call last):
        File "<stdin>", line 3, in f
      ValueError: 1
>>>

except*

We are proposing to introduce a new variant of the try..except syntax to simplify working with exception groups. The * symbol indicates that multiple exceptions can be handled by each except* clause:

try:
  ...
except *SpamError:
  ...
except *FooError as e:
  ...
except *(BarError, BazError) as e:
  ...

In a traditional try-except statement there is only one exception to handle, so the body of at most one except clause executes; the first one that matches the exception. With the new syntax, an except* clause can match a subgroup of the ExceptionGroup that was raised, while the remaining part is matched by following except* clauses. In other words, a single ExceptionGroup can cause several except* clauses to execute, but each such clause executes at most once (for all matching exceptions from the group) and each exception is either handled by exactly one clause (the first one that matches its type) or is reraised at the end.

For example, suppose that the body of the try block above raises eg = ExceptionGroup('msg', [FooError(1), FooError(2), BazError()]). The except* clauses are evaluated in order by calling split on the unhandled ExceptionGroup, which is initially equal to eg and then shrinks as exceptions are matched and extracted from it. In the first except* clause, unhandled.split(SpamError) returns (None, unhandled) so the body of this block is not executed and unhandled is unchanged. For the second block, unhandled.split(FooError) returns a non-trivial split (match, rest) with match = ExceptionGroup('msg', [FooError(1), FooError(2)]) and rest = ExceptionGroup('msg', [BazError()]). The body of this except* block is executed, with the value of e and sys.exc_info() set to match. Then, unhandled is set to rest. Finally, the third block matches the remaining exception so it is executed with e and sys.exc_info() set to ExceptionGroup('msg', [BazError()]).

Exceptions are matched using a subclass check. For example:

try:
  low_level_os_operation()
except *OSerror as eg:
  for e in eg.errors:
    print(type(e).__name__)

could output:

BlockingIOError
ConnectionRefusedError
OSError
InterruptedError
BlockingIOError

The order of except* clauses is significant just like with the regular try..except:

>>> try:
...    raise ExceptionGroup("problem", [BlockingIOError()])
... except *OSError as e:   # Would catch the error
...   print(repr(e))
... except *BlockingIOError: # Would never run
...   print('never')
...
ExceptionGroup('problem', [BlockingIOError()])

Recursive Matching

The matching of except* clauses against an ExceptionGroup is performed recursively, using the ExceptionGroup.split() method:

>>> try:
...   raise ExceptionGroup(
...     "eg",
...     [ValueError('a'),
...      TypeError('b'),
...      ExceptionGroup("nested", [TypeError('c'), KeyError('d')])
...     ]
...   )
... except *TypeError as e1:
...   print(f'e1 = {e1!r}')
... except *Exception as e2:
...   print(f'e2 = {e2!r}')
...
e1 = ExceptionGroup('eg', [TypeError('b'), ExceptionGroup('nested', [TypeError('c')])])
e2 = ExceptionGroup('eg', [ValueError('a'), ExceptionGroup('nested', [KeyError('d')])])
>>>

Unmatched Exceptions

If not all exceptions in an ExceptionGroup were matched by the except* clauses, the remaining part of the ExceptionGroup is propagated on:

>>> try:
...   try:
...     raise ExceptionGroup(
...       "msg", [ValueError('a'), TypeError('b'), TypeError('c'), KeyError('e')]
...     )
...   except *ValueError as e:
...     print(f'got some ValueErrors: {e!r}')
...   except *TypeError as e:
...     print(f'got some TypeErrors: {e!r}')
... except ExceptionGroup as e:
...   print(f'propagated: {e!r}')
...
got some ValueErrors: ExceptionGroup('msg', [ValueError('a')])
got some TypeErrors: ExceptionGroup('msg', [TypeError('b'), TypeError('c')])
propagated: ExceptionGroup('msg', [KeyError('e')])
>>>

Naked Exceptions

If the exception raised inside the try body is not of type ExceptionGroup, we call it a naked exception. If its type matches one of the except* clauses, it is caught and wrapped by an ExceptionGroup with an empty message string. This is to make the type of e consistent and statically known:

>>> try:
...    raise BlockingIOError
... except *OSError as e:
...    print(repr(e))
...
ExceptionGroup('', [BlockingIOError()])

However, if a naked exception is not caught, it propagates in its original naked form:

>>> try:
...   try:
...     raise ValueError(12)
...   except *TypeError as e:
...     print('never')
... except ValueError as e:
...   print(f'caught ValueError: {e!r}')
...
caught ValueError: ValueError(12)
>>>

Raising exceptions in an except* block

In a traditional except block, there are two ways to raise exceptions: raise e to explicitly raise an exception object e, or naked raise to reraise the 'current exception'. When e is the current exception, the two forms are not equivalent because a reraise does not add the current frame to the stack:

def foo():                           | def foo():
  try:                               | try:
    1 / 0                            |   1 / 0
  except ZeroDivisionError as e:     | except ZeroDivisionError:
    raise e                          |   raise
                                     |
foo()                                | foo()
                                     |
Traceback (most recent call last):   | Traceback (most recent call last):
  File "/Users/guido/a.py", line 7   |   File "/Users/guido/b.py", line 7
    foo()                            |     foo()
  File "/Users/guido/a.py", line 5   |   File "/Users/guido/b.py", line 3
    raise e                          |     1/0
  File "/Users/guido/a.py", line 3   | ZeroDivisionError: division by zero
    1/0                              |
ZeroDivisionError: division by zero  |

This holds for ExceptionGroups as well, but the situation is now more complex because there can be exceptions raised and reraised from multiple except* clauses, as well as unhandled exceptions that need to propagate. The interpreter needs to combine all those exceptions into a result, and raise that.

The reraised exceptions and the unhandled exceptions are subgroups of the original ExceptionGroup, and share its metadata (cause, context, traceback). On the other hand, each of the explicitly raised exceptions has its own metadata - the traceback contains the line from which it was raised, its cause is whatever it may have been explicitly chained to, and its context is the value of sys.exc_info() in the except* clause of the raise.

In the aggregated ExceptionGroup, the reraised and unhandled exceptions have the same relative structure as in the original exception, as if they were split off together in one subgroup call. For example, in the snippet below the inner try-except* block raises an ExceptionGroup that contains all ValueErrors and TypeErrors merged back into the same shape they had in the original ExceptionGroup:

>>> try:
...   try:
...     raise ExceptionGroup("eg",
...                          [ValueError(1),
...                           TypeError(2),
...                           OSError(3),
...                           ExceptionGroup(
...                              "nested",
...                              [OSError(4), TypeError(5), ValueError(6)])])
...   except *ValueError as e:
...     print(f'*ValueError: {e!r}')
...     raise
...   except *OSError as e:
...     print(f'*OSError: {e!r}')
... except ExceptionGroup as e:
...   print(repr(e))
...
*ValueError: ExceptionGroup('eg', [ValueError(1), ExceptionGroup('nested', [ValueError(6)])])
*OSError: ExceptionGroup('eg', [OSError(3), ExceptionGroup('nested', [OSError(4)])])
ExceptionGroup('eg', [ValueError(1), TypeError(2), ExceptionGroup('nested', [TypeError(5), ValueError(6)])])
>>>

When exceptions are raised explicitly, they are independent of the original exception group, and cannot be merged with it (they have their own cause, context and traceback). Instead, they are combined into a new ExceptionGroup, which also contains the reraised/unhandled subgroup described above.

In the following example, the ValueErrors were raised so they are in their own ExceptionGroup, while the OSErrors were reraised so they were merged with the unhandled TypeErrors.

>>> try:
...    try:
...      raise ExceptionGroup("eg",
...                            [ValueError(1),
...                            TypeError(2),
...                            OSError(3),
...                            ExceptionGroup(
...                               "nested",
...                               [OSError(4), TypeError(5), ValueError(6)])])
...    except *ValueError as e:
...      print(f'*ValueError: {e!r}')
...      raise e
...    except *OSError as e:
...      print(f'*OSError: {e!r}')
...      raise
... except ExceptionGroup as e:
...    traceback.print_exception(e)
...
*ValueError: ExceptionGroup('eg', [ValueError(1), ExceptionGroup('nested', [ValueError(6)])])
*OSError: ExceptionGroup('eg', [OSError(3), ExceptionGroup('nested', [OSError(4)])])
Traceback (most recent call last):
  File "<stdin>", line 3, in <module>
ExceptionGroup
   ------------------------------------------------------------
   Traceback (most recent call last):
     File "<stdin>", line 12, in <module>
     File "<stdin>", line 3, in <module>
   ExceptionGroup: eg
      ------------------------------------------------------------
      ValueError: 1
      ------------------------------------------------------------
      ExceptionGroup: nested
         ------------------------------------------------------------
         ValueError: 6
   ------------------------------------------------------------
   Traceback (most recent call last):
     File "<stdin>", line 3, in <module>
   ExceptionGroup: eg
      ------------------------------------------------------------
      TypeError: 2
      ------------------------------------------------------------
      OSError: 3
      ------------------------------------------------------------
      ExceptionGroup: nested
         ------------------------------------------------------------
         OSError: 4
         ------------------------------------------------------------
         TypeError: 5
>>>

Chaining

Explicitly raised ExceptionGroups are chained as with any exceptions. The following example shows how part of ExceptionGroup "one" became the context for ExceptionGroup "two", while the other part was combined with it into the new ExceptionGroup.

>>> try:
...    try:
...      raise ExceptionGroup("one", [ValueError('a'), TypeError('b')])
...    except *ValueError:
...      raise ExceptionGroup("two", [KeyError('x'), KeyError('y')])
... except BaseException as e:
...    traceback.print_exception(e)
...
Traceback (most recent call last):
  File "<stdin>", line 3, in <module>
ExceptionGroup
   ------------------------------------------------------------
   Traceback (most recent call last):
     File "<stdin>", line 3, in <module>
   ExceptionGroup: one
      ------------------------------------------------------------
      ValueError: a

   During handling of the above exception, another exception occurred:

   Traceback (most recent call last):
     File "<stdin>", line 5, in <module>
   ExceptionGroup: two
      ------------------------------------------------------------
      KeyError: 'x'
      ------------------------------------------------------------
      KeyError: 'y'

   ------------------------------------------------------------
   Traceback (most recent call last):
     File "<stdin>", line 3, in <module>
   ExceptionGroup: one
      ------------------------------------------------------------
      TypeError: b

Raising New Exceptions

In the previous examples the explicit raises were of the exceptions that were caught, so for completion we show a new exception being raise, with chaining:

>>> try:
...   try:
...     raise TypeError('bad type')
...   except *TypeError as e:
...     raise ValueError('bad value') from e
... except ExceptionGroup as e:
...   traceback.print_exception(e)
...
Traceback (most recent call last):
  File "<stdin>", line 3, in <module>
ExceptionGroup
   ------------------------------------------------------------
   ExceptionGroup
      ------------------------------------------------------------
      Traceback (most recent call last):
        File "<stdin>", line 3, in <module>
      TypeError: bad type

   The above exception was the direct cause of the following exception:

   Traceback (most recent call last):
     File "<stdin>", line 5, in <module>
   ValueError: bad value
>>>

Note that exceptions raised in one except* clause are not eligible to match other clauses from the same try statement:

>>> try:
...   try:
...     raise TypeError(1)
...   except *TypeError:
...     raise ValueError(2)   # <- not caught in the next clause
...   except *ValueError:
...     print('never')
... except ExceptionGroup as e:
...   traceback.print_exception(e)
...
Traceback (most recent call last):
  File "<stdin>", line 3, in <module>
ExceptionGroup
   ------------------------------------------------------------
   ExceptionGroup
      ------------------------------------------------------------
      Traceback (most recent call last):
        File "<stdin>", line 3, in <module>
      TypeError: 1

   During handling of the above exception, another exception occurred:

   Traceback (most recent call last):
     File "<stdin>", line 5, in <module>
   ValueError: 2

Raising a new instance of a naked exception does not cause this exception to be wrapped by an ExceptionGroup. Rather, the exception is raised as is, and if it needs to be combined with other propagated exceptions, it becomes a direct child of the new ExceptionGroup created for that:

>>> try:
...   try:
...     raise ExceptionGroup("eg", [ValueError('a')])
...   except *ValueError:
...     raise KeyError('x')
... except BaseException as e:
...     traceback.print_exception(e)
...
Traceback (most recent call last):
  File "<stdin>", line 3, in <module>
ExceptionGroup
   ------------------------------------------------------------
   Traceback (most recent call last):
     File "<stdin>", line 3, in <module>
   ExceptionGroup: eg
      ------------------------------------------------------------
      ValueError: a

   During handling of the above exception, another exception occurred:

   Traceback (most recent call last):
     File "<stdin>", line 5, in <module>
   KeyError: 'x'
>>>
>>> try:
...   try:
...     raise ExceptionGroup("eg", [ValueError('a'), TypeError('b')])
...   except *ValueError:
...     raise KeyError('x')
... except BaseException as e:
...     traceback.print_exception(e)
...
Traceback (most recent call last):
  File "<stdin>", line 3, in <module>
ExceptionGroup
   ------------------------------------------------------------
   Traceback (most recent call last):
     File "<stdin>", line 3, in <module>
   ExceptionGroup: eg
      ------------------------------------------------------------
      ValueError: a

   During handling of the above exception, another exception occurred:

   Traceback (most recent call last):
     File "<stdin>", line 5, in <module>
   KeyError: 'x'

   ------------------------------------------------------------
   Traceback (most recent call last):
     File "<stdin>", line 3, in <module>
   ExceptionGroup: eg
      ------------------------------------------------------------
      TypeError: b
>>>

Finally, as an example of how the proposed API can help us work effectively with ExceptionGroups, the following code ignores all EPIPE OS errors, while letting all other exceptions propagate.

try:
  low_level_os_operation()
except *OSerror as errors:
  raise errors.subgroup(lambda e: e.errno != errno.EPIPE) from None

Caught Exception Objects

It is important to point out that the ExceptionGroup bound to e is an ephemeral object. Raising it via raise or raise e will not cause changes to the overall shape of the ExceptionGroup. Any modifications to it will likely be lost:

>>> eg = ExceptionGroup("eg", [TypeError(12)])
>>> eg.foo = 'foo'
>>> try:
...   raise eg
... except *TypeError as e:
...   e.foo = 'bar'
... # ^----------- `e` is an ephemeral object that might get
>>> #              destroyed after the `except*` clause.
>>> eg.foo
'foo'
>>>

Forbidden Combinations

  • It is not possible to use both traditional except blocks and the new except* clauses in the same try statement. The following example is a SyntaxErorr:
try:
   ...
except ValueError:
   pass
except *CancelledError:  # <- SyntaxError:
   pass                  #    combining `except` and `except*` is prohibited
  • It is possible to catch the ExceptionGroup type with except, but not with except* because the latter is ambiguous:
try:
   ...
except ExceptionGroup:  # <- This works
   pass

try:
   ...
except *ExceptionGroup:  # <- Runtime error
   pass
  • An empty "match anything" except* block is not supported as its meaning may be confusing:
try:
   ...
except*:   # <- SyntaxError
  pass
  • continue, break, and return are disallowed in except* clauses, causing a SyntaxError.

This is because the exceptions in an ExceptionGroup are assumed to be independent, and the presence or absence of one of them should not impact handling of the others, as could happen if we allow an except* clause to change the way control flows through other clauses. We believe that this is error prone and there are clearer ways to implement a check like this:

def foo():
  try:
    raise ExceptionGroup("msg", A(), B())
  except *A:
    return 1   # <- SyntaxError
  except *B as e:
    raise TypeError("Can't have B without A!")

Backwards Compatibility

Backwards compatibility was a requirement of our design, and the changes we propose in this PEP will not break any existing code:

  • The addition of a new builtin exception type ExceptionGroup does not impact existing programs. The way that existing exceptions are handled and displayed does not change in any way.

  • The behaviour of except is unchanged so existing code will continue to work. Programs will only be impacted by the changes proposed in this PEP once they begin to use ExceptionGroups and except*.

Once programs begin to use these features, there will be migration issues to consider:

  • An except Exception: clause will not catch ExceptionGroups because they are derived from BaseException. Any such clause will need to be replaced by except (Exception, ExceptionGroup): or except *Exception:.

  • Similarly, any except T: clause that wraps code which is now potentially raising ExceptionGroup needs to become except *T:, and its body may need to be updated.

  • Libraries that need to support older Python versions will not be able to use except* or raise ExceptionGroups.

How to Teach This

ExceptionGroups and except* will be documented as part of the language standard. Libraries that raise ExceptionGroups such as asyncio will need to specify this in their documentation and clarify which API calls need to be wrapped with try-except* rather than try-except.

Reference Implementation

We developed these concepts (and the examples for this PEP) with the help of a reference implementation.

It has the builtin ExceptionGroup along with the changes to the traceback formatting code, in addition to the grammar, compiler and interpreter changes required to support except*.

Two opcodes were added: one implements the exception type match check via ExceptionGroup.split(), and the other is used at the end of a try-except construct to merge all unhandled, raised and reraised exceptions (if any). The raised/reraised exceptions are collected in a list on the runtime stack. For this purpose, the body of each except* clause is wrapped in a traditional try-except which captures any exceptions raised. Both raised and reraised exceptions are collected in the same list. When the time comes to merge them into a result, the raised and reraised exceptions are distinguished by comparing their metadata fields (context, cause, traceback) with those of the originally raised exception. As mentioned above, the reraised exceptions have the same metadata as the original, while the raised ones do not.

Rejected Ideas

The ExceptionGroup API

We considered making ExceptionGroups iterable, so that list(eg) would produce a flattened list of the leaf exceptions contained in the group. We decided that this would not be not be a sound API, because the metadata (cause, context and traceback) of the individual exceptions in a group are incomplete and this could create problems. If use cases arise where this can be helpful, we can document (or even provide in the standard library) a sound recipe for accessing an individual exception: use the split() method to create an ExceptionGroup for a single exception and then extract the contained exception with the correct metadata.

Traceback Representation

We considered options for adapting the traceback data structure to represent trees, but it became apparent that a traceback tree is not meaningful once separated from the exceptions it refers to. While a simple-path traceback can be attached to any exception by a with_traceback() call, it is hard to imagine a case where it makes sense to assign a traceback tree to an exception group. Furthermore, a useful display of the traceback includes information about the nested exceptions. For this reason we decided it is best to leave the traceback mechanism as it is and modify the traceback display code.

A full redesign of except

We considered introducing a new keyword (such as catch) which can be used to handle both naked exceptions and ExceptionGroups. Its semantics would be the same as those of except* when catching an ExceptionGroup, but it would not wrap a naked exception to create an ExceptionGroup. This would have been part of a long term plan to replace except by catch, but we decided that deprecating except in favour of an enhanced keyword would be too confusing for users at this time, so it is more appropriate to introduce the except* syntax for ExceptionGroups while except continues to be used for simple exceptions.

Applying an except* clause on one exception at a time

We considered making except* clauses always execute on a single exception, possibly executing the same clause multiple times when it matches multiple exceptions. We decided instead to execute each except* clause at most once, giving it an ExceptionGroup that contains all matching exceptions. The reason for this decision was the observation that when a program needs to know the particular context of an exception it is handling, it handles it before grouping it with other exceptions and raising them together.

For example, KeyError is an exception that typically relates to a certain operation. Any recovery code would be local to the place where the error occurred, and would use the traditional except:

try:
  dct[key]
except KeyError:
  # handle the exception

It is unlikely that asyncio users would want to do something like this:

try:
  async with asyncio.TaskGroup() as g:
    g.create_task(task1); g.create_task(task2)
except *KeyError:
  # handling KeyError here is meaningless, there's
  # no context to do anything with it but to log it.

When a program handles a collection of exceptions that were aggregated into an exception group, it would not typically attempt to recover from any particular failed operation, but will rather use the types of the errors to determine how they should impact the program's control flow or what logging or cleanup is required. This decision is likely to be the same whether the group contains a single or multiple instances of something like a KeyboardInterrupt or asyncio.CancelledError. Therefore, it is more convenient to handle all exceptions matching an except* at once. If it does turn out to be necessary, the handler can inpect the ExceptionGroup and process the individual exceptions in it.

Not matching naked exceptions in except*

We considered the option of making except *T match only ExceptionGroups that contain Ts, but not naked Ts. To see why we thought this would not be a desirable feature, return to the distinction in the previous paragraph between operation errors and control flow exceptions. If we don't know whether we should expect naked exceptions or ExceptionGroups from the body of a try block, then we're not in the position of handling operation errors. Rather, we are likely calling some callback and will be handling errors to make control flow decisions. We are likely to do the same thing whether we catch a naked exception of type T or an ExceptionGroup with one or more Ts. Therefore, the burden of having to explicitly handle both is not likely to have semantic benefit.

If it does turn out to be necessary to make the distinction, it is always possible to nest in the try-except* clause an additional try-except clause which intercepts and handles a naked exception before the except* clause has a change to wrap it in an ExceptionGroup. In this case the overhead of specifying both is not additional burden - we really do need to write a separate code block to handle each case:

try:
  try:
    ...
  except SomeError:
    # handle the naked exception
except *SomeError:
  # handle the ExceptionGroup

Allow mixing except: and except*: in the same try

This option was rejected because it adds complexity without adding useful semantics. Presumably the intention would be that an except T: block handles only naked exceptions of type T, while except *T: handles T in ExceptionGroups. We already discussed above why this is unlikely to be useful in practice, and if it is needed then the nested try-except block can be used instead to achieve the same result.

try* instead of except*

Since either all or none of the clauses of a try construct are except*, we considered changing the syntax of the try instead of all the except* clauses. We rejected this because it would be less obvious. The fact that we are handling ExceptionGroups of T rather than only naked Ts should be specified in the same place where we state T.

See Also

  • An analysis of how exception groups will likely be used in asyncio programs: #3 (comment)

  • The issue where the except* concept was first formalized: #4

References

Copyright

This document is placed in the public domain or under the CC0-1.0-Universal license, whichever is more permissive.