diff --git a/.DS_Store b/.DS_Store new file mode 100644 index 0000000000000..1101c4c885ef7 Binary files /dev/null and b/.DS_Store differ diff --git a/docs/.DS_Store b/docs/.DS_Store new file mode 100644 index 0000000000000..43163555131c6 Binary files /dev/null and b/docs/.DS_Store differ diff --git a/docs/ko/.DS_Store b/docs/ko/.DS_Store new file mode 100644 index 0000000000000..7e83e7888cb5a Binary files /dev/null and b/docs/ko/.DS_Store differ diff --git a/docs/ko/docs/.DS_Store b/docs/ko/docs/.DS_Store new file mode 100644 index 0000000000000..7df807eaeffb4 Binary files /dev/null and b/docs/ko/docs/.DS_Store differ diff --git a/docs/ko/docs/deployment/docker.md b/docs/ko/docs/deployment/docker.md new file mode 100644 index 0000000000000..e348c0d8d55b7 --- /dev/null +++ b/docs/ko/docs/deployment/docker.md @@ -0,0 +1,698 @@ +# 컨테이너의 FastAPI - 도커 + +FastAPI 어플리케이션을 배포할 때 일반적인 접근 방법은 **리눅스 컨테이너 이미지**를 생성하는 것입니다. 이 방법은 주로 **도커**를 사용해 이루어집니다. 그런 다음 해당 컨테이너 이미지를 몇가지 방법으로 배포할 수 있습니다. + +리눅스 컨테이너를 사용하는 데에는 **보안**, **반복 가능성**, **단순함** 등의 장점이 있습니다. + +!!! 팁 + 시간에 쫓기고 있고 이미 이런것들을 알고 있다면 [`Dockerfile`👇](#build-a-docker-image-for-fastapi)로 점프할 수 있습니다. + +
+도커파일 미리보기 👀 + +```Dockerfile +FROM python:3.9 + +WORKDIR /code + +COPY ./requirements.txt /code/requirements.txt + +RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt + +COPY ./app /code/app + +CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "80"] + +# If running behind a proxy like Nginx or Traefik add --proxy-headers +# CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "80", "--proxy-headers"] +``` + +
+ +## 컨테이너란 + +컨테이너(주로 리눅스 컨테이너)는 어플리케이션의 의존성과 필요한 파일들을 모두 패키징하는 매우 **가벼운** 방법입니다. 컨테이너는 같은 시스템에 있는 다른 컨테이너(다른 어플리케이션이나 요소들)와 독립적으로 유지됩니다. + +리눅스 컨테이너는 호스트(머신, 가상 머신, 클라우드 서버 등)와 같은 리눅스 커널을 사용해 실행됩니다. 이말은 리눅스 컨테이너가 (전체 운영체제를 모방하는 다른 가상 머신과 비교했을 때) 매우 가볍다는 것을 의미합니다. + +이 방법을 통해, 컨테이너는 직접 프로세스를 실행하는 것과 비슷한 정도의 **적은 자원**을 소비합니다 (가상 머신은 훨씬 많은 자원을 소비할 것입니다). + +컨테이너는 또한 그들만의 **독립된** 실행 프로세스 (일반적으로 하나의 프로세스로 충분합니다), 파일 시스템, 그리고 네트워크를 가지므로 배포, 보안, 개발 및 기타 과정을 단순화 합니다. + +## 컨테이너 이미지란 + +**컨테이너**는 **컨테이너 이미지**를 실행한 것 입니다. + +컨테이너 이미지란 컨테이너에 필요한 모든 파일, 환경 변수 그리고 디폴트 명령/프로그램의 **정적** 버전입니다. 여기서 **정적**이란 말은 컨테이너 **이미지**가 작동되거나 실행되지 않으며, 단지 패키지 파일과 메타 데이터라는 것을 의미합니다. + +저장된 정적 컨텐츠인 **컨테이너 이미지**와 대조되게, **컨테이너**란 보통 실행될 수 있는 작동 인스턴스를 의미합니다. + +**컨테이너**가 (**컨테이너 이미지**로 부터) 시작되고 실행되면, 컨테이너는 파일이나 환경 변수를 생성하거나 변경할 수 있습니다. 이러한 변화는 오직 컨테이너에서만 존재하며, 그 기반이 되는 컨테이너 이미지에는 지속되지 않습니다 (즉 디스크에는 저장되지 않습니다). + +컨테이너 이미지는 **프로그램** 파일과 컨텐츠, 즉 `python`과 어떤 파일 `main.py`에 비교할 수 있습니다. + +그리고 (**컨테이너 이미지**와 대비해서) **컨테이너**는 이미지의 실제 실행 인스턴스로 **프로세스**에 비교할 수 있습니다. 사실, 컨테이너는 **프로세스 러닝**이 있을 때만 실행됩니다 (그리고 보통 하나의 프로세스 입니다). 컨테이너는 내부에서 실행되는 프로세스가 없으면 종료됩니다. + +## 컨테이너 이미지 + +도커는 **컨테이너 이미지**와 **컨테이너**를 생성하고 관리하는데 주요 도구 중 하나가 되어왔습니다. + +그리고 도커 허브에 다양한 도구, 환경, 데이터베이스, 그리고 어플리케이션에 대해 미리 만들어진 **공식 컨테이너 이미지**가 공개되어 있습니다. + +예를 들어, 공식 파이썬 이미지가 있습니다. + +또한 다른 대상, 예를 들면 데이터베이스를 위한 이미지들도 있습니다: + +* PostgreSQL +* MySQL +* MongoDB +* Redis 등 + +미리 만들어진 컨테이너 이미지를 사용하면 서로 다른 도구들을 **결합**하기 쉽습니다. 대부분의 경우에, **공식 이미지들**을 사용하고 환경 변수를 통해 설정할 수 있습니다. + +이런 방법으로 대부분의 경우에 컨테이너와 도커에 대해 배울 수 있으며 다양한 도구와 요소들에 대한 지식을 재사용할 수 있습니다. + +따라서, 서로 다른 **다중 컨테이너**를 생성한 다음 이들을 연결할 수 있습니다. 예를 들어 데이터베이스, 파이썬 어플리케이션, 리액트 프론트엔드 어플리케이션을 사용하는 웹 서버에 대한 컨테이너를 만들어 이들의 내부 네트워크로 각 컨테이너를 연결할 수 있습니다. + +모든 컨테이너 관리 시스템(도커나 쿠버네티스)은 이러한 네트워킹 특성을 포함하고 있습니다. + +## 컨테이너와 프로세스 + +**컨테이너 이미지**는 보통 **컨테이너**를 시작하기 위해 필요한 메타데이터와 디폴트 커맨드/프로그램과 그 프로그램에 전달하기 위한 파라미터들을 포함합니다. 이는 커맨드 라인에서 프로그램을 실행할 때 필요한 값들과 유사합니다. + +**컨테이너**가 시작되면, 해당 커맨드/프로그램이 실행됩니다 (그러나 다른 커맨드/프로그램을 실행하도록 오버라이드 할 수 있습니다). + +컨테이너는 **메인 프로세스**(커맨드 또는 프로그램)이 실행되는 동안 실행됩니다. + +컨테이너는 일반적으로 **단일 프로세스**를 가지고 있지만, 메인 프로세스의 서브 프로세스를 시작하는 것도 가능하며, 이 방법으로 하나의 컨테이너에 **다중 프로세스**를 가질 수 있습니다. + +그러나 **최소한 하나의 실행중인 프로세스**를 가지지 않고서는 실행중인 컨테이너를 가질 수 없습니다. 만약 메인 프로세스가 중단되면, 컨테이너도 중단됩니다. + +## FastAPI를 위한 도커 이미지 빌드하기 + +이제 무언가를 만들어 봅시다! 🚀 + +**공식 파이썬** 이미지에 기반하여, FastAPI를 위한 **도커 이미지**를 **맨 처음부터** 생성하는 방법을 보이겠습니다. + +**대부분의 경우**에 다음과 같은 것들을 하게 됩니다. 예를 들면: + +* **쿠버네티스** 또는 유사한 도구 사용하기 +* **라즈베리 파이**로 실행하기 +* 컨테이너 이미지를 실행할 클라우드 서비스 사용하기 등 + +### 요구 패키지 + +일반적으로는 어플리케이션의 특정 파일을 위한 **패키지 요구 조건**이 있을 것입니다. + +그 요구 조건을 **설치**하는 방법은 여러분이 사용하는 도구에 따라 다를 것입니다. + +가장 일반적인 방법은 패키지 이름과 버전이 줄 별로 기록된 `requirements.txt` 파일을 만드는 것입니다. + +버전의 범위를 설정하기 위해서는 [FastAPI 버전들에 대하여](./versions.md){.internal-link target=_blank}에 쓰여진 것과 같은 아이디어를 사용합니다. + +예를 들어, `requirements.txt` 파일은 다음과 같을 수 있습니다: + +``` +fastapi>=0.68.0,<0.69.0 +pydantic>=1.8.0,<2.0.0 +uvicorn>=0.15.0,<0.16.0 +``` + +그리고 일반적으로 패키지 종속성은 `pip`로 설치합니다. 예를 들어: + +
+ +```console +$ pip install -r requirements.txt +---> 100% +Successfully installed fastapi pydantic uvicorn +``` + +
+ +!!! 정보 + 패키지 종속성을 정의하고 설치하기 위한 방법과 도구는 다양합니다. + + 나중에 아래 세션에서 Poetry를 사용한 예시를 보이겠습니다. 👇 + +### **FastAPI** 코드 생성하기 + +* `app` 디렉터리를 생성하고 이동합니다. +* 빈 파일 `__init__.py`을 생성합니다. +* 다음과 같은 `main.py`을 생성합니다: + +```Python +from typing import Union + +from fastapi import FastAPI + +app = FastAPI() + + +@app.get("/") +def read_root(): + return {"Hello": "World"} + + +@app.get("/items/{item_id}") +def read_item(item_id: int, q: Union[str, None] = None): + return {"item_id": item_id, "q": q} +``` + +### 도커파일 + +이제 같은 프로젝트 디렉터리에 다음과 같은 파일 `Dockerfile`을 생성합니다: + +```{ .dockerfile .annotate } +# (1) +FROM python:3.9 + +# (2) +WORKDIR /code + +# (3) +COPY ./requirements.txt /code/requirements.txt + +# (4) +RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt + +# (5) +COPY ./app /code/app + +# (6) +CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "80"] +``` + +1. 공식 파이썬 베이스 이미지에서 시작합니다. + +2. 현재 워킹 디렉터리를 `/code`로 설정합니다. + + 여기에 `requirements.txt` 파일과 `app` 디렉터리를 위치시킬 것입니다. + +3. 요구 조건과 파일을 `/code` 디렉터리로 복사합니다. + + 처음에는 **오직** 요구 조건이 필요한 파일만 복사하고, 이외의 코드는 그대로 둡니다. + + 이 파일이 **자주 바뀌지 않기 때문에**, 도커는 파일을 탐지하여 이 단계의 **캐시**를 사용하여 다음 단계에서도 캐시를 사용할 수 있도록 합니다. + +4. 요구 조건 파일에 있는 패키지 종속성을 설치합니다. + + `--no-cache-dir` 옵션은 `pip`에게 다운로드한 패키지들을 로컬 환경에 저장하지 않도록 전달합니다. 이는 마치 같은 패키지를 설치하기 위해 오직 `pip`만 다시 실행하면 될 것 같지만, 컨테이너로 작업하는 경우 그렇지는 않습니다. + + !!! 노트 + `--no-cache-dir` 는 오직 `pip`와 관련되어 있으며, 도커나 컨테이너와는 무관합니다. + + `--upgrade` 옵션은 `pip`에게 설치된 패키지들을 업데이트하도록 합니다. + + 이전 단계에서 파일을 복사한 것이 **도커 캐시**에 의해 탐지되기 때문에, 이 단계에서도 가능한 한 **도커 캐시**를 사용하게 됩니다. + + 이 단계에서 캐시를 사용하면 **매번** 모든 종속성을 다운로드 받고 설치할 필요가 없어, 개발 과정에서 이미지를 지속적으로 생성하는 데에 드는 **시간**을 많이 **절약**할 수 있습니다. + +5. `/code` 디렉터리에 `./app` 디렉터리를 복사합니다. + + **자주 변경되는** 모든 코드를 포함하고 있기 때문에, 도커 **캐시**는 이 단계나 **이후의 단계에서** 잘 사용되지 않습니다. + + 그러므로 컨테이너 이미지 빌드 시간을 최적화하기 위해 `Dockerfile`의 **거의 끝 부분**에 입력하는 것이 중요합니다. + +6. `uvicorn` 서버를 실행하기 위해 **커맨드**를 설정합니다. + + `CMD`는 문자열 리스트를 입력받고, 각 문자열은 커맨드 라인의 각 줄에 입력할 문자열입니다. + + 이 커맨드는 **현재 워킹 디렉터리**에서 실행되며, 이는 위에서 `WORKDIR /code`로 설정한 `/code` 디렉터리와 같습니다. + + 프로그램이 `/code`에서 시작하고 그 속에 `./app` 디렉터리가 여러분의 코드와 함께 들어있기 때문에, **Uvicorn**은 이를 보고 `app`을 `app.main`으로부터 **불러 올** 것입니다. + +!!! 팁 + 각 코드 라인을 코드의 숫자 버블을 클릭하여 리뷰할 수 있습니다. 👆 + +이제 여러분은 다음과 같은 디렉터리 구조를 가지고 있을 것입니다: + +``` +. +├── app +│   ├── __init__.py +│ └── main.py +├── Dockerfile +└── requirements.txt +``` + +#### TLS 종료 프록시의 배후 + +만약 여러분이 컨테이너를 Nginx 또는 Traefik과 같은 TLS 종료 프록시 (로드 밸런서) 뒤에서 실행하고 있다면, `--proxy-headers` 옵션을 더하는 것이 좋습니다. 이 옵션은 Uvicorn에게 어플리케이션이 HTTPS 등의 뒤에서 실행되고 있으므로 프록시에서 전송된 헤더를 신뢰할 수 있다고 알립니다. + +```Dockerfile +CMD ["uvicorn", "app.main:app", "--proxy-headers", "--host", "0.0.0.0", "--port", "80"] +``` + +#### 도커 캐시 + +이 `Dockerfile`에는 중요한 트릭이 있는데, 처음에는 **의존성이 있는 파일만** 복사하고, 나머지 코드는 그대로 둡니다. 왜 이런 방법을 써야하는지 설명하겠습니다. + +```Dockerfile +COPY ./requirements.txt /code/requirements.txt +``` + +도커와 다른 도구들은 컨테이너 이미지를 **증가하는 방식으로 빌드**합니다. `Dockerfile`의 맨 윗 부분부터 시작해, 레이어 위에 새로운 레이어를 더하는 방식으로, `Dockerfile`의 각 지시 사항으로 부터 생성된 어떤 파일이든 더해갑니다. + +도커 그리고 이와 유사한 도구들은 이미지 생성 시에 **내부 캐시**를 사용합니다. 만약 어떤 파일이 마지막으로 컨테이너 이미지를 빌드한 때로부터 바뀌지 않았다면, 파일을 다시 복사하여 새로운 레이어를 처음부터 생성하는 것이 아니라, 마지막에 생성했던 **같은 레이어를 재사용**합니다. + +단지 파일 복사를 지양하는 것으로 효율이 많이 향상되는 것은 아니지만, 그 단계에서 캐시를 사용했기 때문에, **다음 단계에서도 마찬가지로 캐시를 사용**할 수 있습니다. 예를 들어, 다음과 같은 의존성을 설치하는 지시 사항을 위한 캐시를 사용할 수 있습니다: + +```Dockerfile +RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt +``` + +패키지를 포함하는 파일은 **자주 변경되지 않습니다**. 따라서 해당 파일만 복사하므로서, 도커는 그 단계의 **캐시를 사용**할 수 있습니다. + +그 다음으로, 도커는 **다음 단계에서** 의존성을 다운로드하고 설치하는 **캐시를 사용**할 수 있게 됩니다. 바로 이 과정에서 우리는 **많은 시간을 절약**하게 됩니다. ✨ ...그리고 기다리는 지루함도 피할 수 있습니다. 😪😆 + +패키지 의존성을 다운로드 받고 설치하는 데이는 **수 분이 걸릴 수 있지만**, **캐시**를 사용하면 최대 **수 초만에** 끝낼 수 있습니다. + +또한 여러분이 개발 과정에서 코드의 변경 사항이 반영되었는지 확인하기 위해 컨테이너 이미지를 계속해서 빌드하면, 절약된 시간은 축적되어 더욱 커질 것입니다. + +그리고 나서 `Dockerfile`의 거의 끝 부분에서, 모든 코드를 복사합니다. 이것이 **가장 빈번하게 변경**되는 부분이며, 대부분의 경우에 이 다음 단계에서는 캐시를 사용할 수 없기 때문에 가장 마지막에 둡니다. + +```Dockerfile +COPY ./app /code/app +``` + +### 도커 이미지 생성하기 + +이제 모든 파일이 제자리에 있으니, 컨테이너 이미지를 빌드합니다. + +* (여러분의 `Dockerfile`과 `app` 디렉터리가 위치한) 프로젝트 디렉터리로 이동합니다. +* FastAPI 이미지를 빌드합니다: + +
+ +```console +$ docker build -t myimage . + +---> 100% +``` + +
+ +!!! 팁 + 맨 끝에 있는 `.` 에 주목합시다. 이는 `./`와 동등하며, 도커에게 컨테이너 이미지를 빌드하기 위한 디렉터리를 알려줍니다. + + 이 경우에는 현재 디렉터리(`.`)와 같습니다. + +### 도커 컨테이너 시작하기 + +* 여러분의 이미지에 기반하여 컨테이너를 실행합니다: + +
+ +```console +$ docker run -d --name mycontainer -p 80:80 myimage +``` + +
+ +## 체크하기 + +여러분의 도커 컨테이너 URL에서 실행 사항을 체크할 수 있습니다. 예를 들어: http://192.168.99.100/items/5?q=somequery 또는 http://127.0.0.1/items/5?q=somequery (또는 동일하게, 여러분의 도커 호스트를 이용해서 체크할 수도 있습니다). + +아래와 비슷한 것을 보게 될 것입니다: + +```JSON +{"item_id": 5, "q": "somequery"} +``` + +## 인터랙티브 API 문서 + +이제 여러분은 http://192.168.99.100/docs 또는 http://127.0.0.1/docs로 이동할 수 있습니다(또는, 여러분의 도커 호스트를 이용할 수 있습니다). + +여러분은 자동으로 생성된 인터랙티브 API(Swagger UI에서 제공된)를 볼 수 있습니다: + +![Swagger UI](https://fastapi.tiangolo.com/img/index/index-01-swagger-ui-simple.png) + +## 대안 API 문서 + +또한 여러분은 http://192.168.99.100/redoc 또는 http://127.0.0.1/redoc으로 이동할 수 있습니다(또는, 여러분의 도커 호스트를 이용할 수 있습니다). + +여러분은 자동으로 생성된 대안 문서(ReDoc에서 제공된)를 볼 수 있습니다: + +![ReDoc](https://fastapi.tiangolo.com/img/index/index-02-redoc-simple.png) + +## 단일 파일 FastAPI로 도커 이미지 생성하기 + +만약 여러분의 FastAPI가 하나의 파일이라면, 예를 들어 `./app` 디렉터리 없이 `main.py` 파일만으로 이루어져 있다면, 파일 구조는 다음과 유사할 것입니다: + +``` +. +├── Dockerfile +├── main.py +└── requirements.txt +``` + +그러면 여러분들은 `Dockerfile` 내에 있는 파일을 복사하기 위해 그저 상응하는 경로를 바꾸기만 하면 됩니다: + +```{ .dockerfile .annotate hl_lines="10 13" } +FROM python:3.9 + +WORKDIR /code + +COPY ./requirements.txt /code/requirements.txt + +RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt + +# (1) +COPY ./main.py /code/ + +# (2) +CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "80"] +``` + +1. `main.py` 파일을 `/code` 디렉터리로 곧바로 복사합니다(`./app` 디렉터리는 고려하지 않습니다). + +2. Uvicorn을 실행해 `app` 객체를 (`app.main` 대신) `main`으로 부터 불러오도록 합니다. + +그 다음 Uvicorn 커맨드를 조정해서 FastAPI 객체를 불러오는데 `app.main` 대신에 새로운 모듈 `main`을 사용하도록 합니다. + +## 배포 개념 + +이제 컨테이너의 측면에서 [배포 개념](./concepts.md){.internal-link target=_blank}에서 다루었던 것과 같은 배포 개념에 대해 이야기해 보겠습니다. + +컨테이너는 주로 어플리케이션을 빌드하고 배포하기 위한 과정을 단순화하는 도구이지만, **배포 개념**에 대한 특정한 접근법을 강요하지 않기 때문에 가능한 배포 전략에는 여러가지가 있습니다. + +**좋은 소식**은 서로 다른 전략들을 포괄하는 배포 개념이 있다는 점입니다. 🎉 + +컨테이너 측면에서 **배포 개념**을 리뷰해 보겠습니다: + +* HTTPS +* 구동하기 +* 재시작 +* 복제 (실행 중인 프로세스 개수) +* 메모리 +* 시작하기 전 단계들 + +## HTTPS + +만약 우리가 FastAPI 어플리케이션을 위한 **컨테이너 이미지**에만 집중한다면 (그리고 나중에 실행될 **컨테이너**에), HTTPS는 일반적으로 다른 도구에 의해 **외부적으로** 다루어질 것 입니다. + +**HTTPS**와 **인증서**의 **자동** 취득을 다루는 것은 다른 컨테이너가 될 수 있는데, 예를 들어 Traefik을 사용하는 것입니다. + +!!! 팁 + Traefik은 도커, 쿠버네티스, 그리고 다른 도구와 통합되어 있어 여러분의 컨테이너를 포함하는 HTTPS를 셋업하고 설정하는 것이 매우 쉽습니다. + +대안적으로, HTTPS는 클라우드 제공자에 의해 서비스의 일환으로 다루어질 수도 있습니다 (이때도 어플리케이션은 여전히 컨테이너에서 실행될 것입니다). + +## 구동과 재시작 + +여러분의 컨테이너를 **시작하고 실행하는** 데에 일반적으로 사용되는 도구는 따로 있습니다. + +이는 **도커** 자체일 수도 있고, **도커 컴포즈**, **쿠버네티스**, **클라우드 서비스** 등이 될 수 있습니다. + +대부분 (또는 전체) 경우에, 컨테이너를 구동하거나 고장시에 재시작하도록 하는 간단한 옵션이 있습니다. 예를 들어, 도커에서는, 커맨드 라인 옵션 `--restart` 입니다. + +컨테이너를 사용하지 않고서는, 어플리케이션을 구동하고 재시작하는 것이 매우 번거롭고 어려울 수 있습니다. 하지만 **컨테이너를 사용한다면** 대부분의 경우에 이런 기능은 기본적으로 포함되어 있습니다. ✨ + +## 복제 - 프로세스 개수 + +만약 여러분이 **쿠버네티스**와 머신 클러스터, 도커 스왐 모드, 노마드, 또는 다른 여러 머신 위에 분산 컨테이너를 관리하는 복잡한 시스템을 다루고 있다면, 여러분은 각 컨테이너에서 (워커와 함께 사용하는 Gunicorn 같은) **프로세스 매니저** 대신 **클러스터 레벨**에서 **복제를 다루**고 싶을 것입니다. + +쿠버네티스와 같은 분산 컨테이너 관리 시스템 중 일부는 일반적으로 들어오는 요청에 대한 **로드 밸런싱**을 지원하면서 **컨테이너 복제**를 다루는 통합된 방법을 가지고 있습니다. 모두 **클러스터 레벨**에서 말이죠. + +이런 경우에, 여러분은 [위에서 묘사된 것](#dockerfile)처럼 **처음부터 도커 이미지를** 빌드해서, 의존성을 설치하고, Uvicorn 워커를 관리하는 Gunicorn 대신 **단일 Uvicorn 프로세스**를 실행하고 싶을 것입니다. + +### 로드 밸런서 + +컨테이너로 작업할 때, 여러분은 일반적으로 **메인 포트의 상황을 감지하는** 요소를 가지고 있을 것입니다. 이는 **HTTPS**를 다루는 **TLS 종료 프록시**와 같은 다른 컨테이너일 수도 있고, 유사한 다른 도구일 수도 있습니다. + +이 요소가 요청들의 **로드**를 읽어들이고 각 워커에게 (바라건대) **균형적으로** 분배한다면, 이 요소는 일반적으로 **로드 밸런서**라고 불립니다. + +!!! 팁 + HTTPS를 위해 사용된 **TLS 종료 프록시** 요소 또한 **로드 밸런서**가 될 수 있습니다. + +또한 컨테이너로 작업할 때, 컨테이너를 시작하고 관리하기 위해 사용한 것과 동일한 시스템은 이미 해당 **로드 밸런서**로 부터 여러분의 앱에 해당하는 컨테이너로 **네트워크 통신**(예를 들어, HTTP 요청)을 전송하는 내부적인 도구를 가지고 있을 것입니다 (여기서도 로드 밸런서는 **TLS 종료 프록시**일 수 있습니다). + +### 하나의 로드 밸런서 - 다중 워커 컨테이너 + +**쿠버네티스**나 또는 다른 분산 컨테이너 관리 시스템으로 작업할 때, 시스템 내부의 네트워킹 메커니즘을 이용함으로써 메인 **포트**를 감지하고 있는 단일 **로드 밸런서**는 여러분의 앱에서 실행되고 있는 **여러개의 컨테이너**에 통신(요청들)을 전송할 수 있게 됩니다. + +여러분의 앱에서 실행되고 있는 각각의 컨테이너는 일반적으로 **하나의 프로세스**만 가질 것입니다 (예를 들어, FastAPI 어플리케이션에서 실행되는 하나의 Uvicorn 프로세스처럼). 이 컨테이너들은 모두 같은 것을 실행하는 점에서 **동일한 컨테이너**이지만, 프로세스, 메모리 등은 공유하지 않습니다. 이 방식으로 여러분은 CPU의 **서로 다른 코어들** 또는 **서로 다른 머신들**을 **병렬화**하는 이점을 얻을 수 있습니다. + +또한 **로드 밸런서**가 있는 분산 컨테이너 시스템은 여러분의 앱에 있는 컨테이너 각각에 **차례대로 요청을 분산**시킬 것 입니다. 따라서 각 요청은 여러분의 앱에서 실행되는 여러개의 **복제된 컨테이너들** 중 하나에 의해 다루어질 것 입니다. + +그리고 일반적으로 **로드 밸런서**는 여러분의 클러스터에 있는 *다른* 앱으로 가는 요청들도 다룰 수 있으며 (예를 들어, 다른 도메인으로 가거나 다른 URL 경로 접두사를 가지는 경우), 이 통신들을 클러스터에 있는 *바로 그 다른* 어플리케이션으로 제대로 전송할 수 있습니다. + +### 단일 프로세스를 가지는 컨테이너 + +이 시나리오의 경우, 여러분은 이미 클러스터 레벨에서 복제를 다루고 있을 것이므로 **컨테이너 당 단일 (Uvicorn) 프로세스**를 가지고자 할 것입니다. + +따라서, 여러분은 Gunicorn 이나 Uvicorn 워커, 또는 Uvicorn 워커를 사용하는 Uvicorn 매니저와 같은 프로세스 매니저를 가지고 싶어하지 **않을** 것입니다. 여러분은 컨테이너 당 **단일 Uvicorn 프로세스**를 가지고 싶어할 것입니다 (그러나 아마도 다중 컨테이너를 가질 것입니다). + +이미 여러분이 클러스터 시스템을 관리하고 있으므로, (Uvicorn 워커를 관리하는 Gunicorn 이나 Uvicorn 처럼) 컨테이너 내에 다른 프로세스 매니저를 가지는 것은 **불필요한 복잡성**만 더하게 될 것입니다. + +### 다중 프로세스를 가지는 컨테이너와 특수한 경우들 + +당연한 말이지만, 여러분이 내부적으로 **Uvicorn 워커 프로세스들**를 시작하는 **Gunicorn 프로세스 매니저**를 가지는 단일 컨테이너를 원하는 **특수한 경우**도 있을 것입니다. + +그런 경우에, 여러분들은 **Gunicorn**을 프로세스 매니저로 포함하는 **공식 도커 이미지**를 사용할 수 있습니다. 이 프로세스 매니저는 다중 **Uvicorn 워커 프로세스들**을 실행하며, 디폴트 세팅으로 현재 CPU 코어에 기반하여 자동으로 워커 개수를 조정합니다. 이 사항에 대해서는 아래의 [Gunicorn과 함께하는 공식 도커 이미지 - Uvicorn](#official-docker-image-with-gunicorn-uvicorn)에서 더 다루겠습니다. + +이런 경우에 해당하는 몇가지 예시가 있습니다: + +#### 단순한 앱 + +만약 여러분의 어플리케이션이 **충분히 단순**해서 (적어도 아직은) 프로세스 개수를 파인-튠 할 필요가 없거나 클러스터가 아닌 **단일 서버**에서 실행하고 있다면, 여러분은 컨테이너 내에 프로세스 매니저를 사용하거나 (공식 도커 이미지에서) 자동으로 설정되는 디폴트 값을 사용할 수 있습니다. + +#### 도커 구성 + +여러분은 **도커 컴포즈**로 (클러스터가 아닌) **단일 서버로** 배포할 수 있으며, 이 경우에 공유된 네트워크와 **로드 밸런싱**을 포함하는 (도커 컴포즈로) 컨테이너의 복제를 관리하는 단순한 방법이 없을 수도 있습니다. + +그렇다면 여러분은 **프로세스 매니저**와 함께 내부에 **몇개의 워커 프로세스들**을 시작하는 **단일 컨테이너**를 필요로 할 수 있습니다. + +#### Prometheus와 다른 이유들 + +여러분은 **단일 프로세스**를 가지는 **다중 컨테이너** 대신 **다중 프로세스**를 가지는 **단일 컨테이너**를 채택하는 **다른 이유**가 있을 수 있습니다. + +예를 들어 (여러분의 장치 설정에 따라) Prometheus 익스포터와 같이 같은 컨테이너에 들어오는 **각 요청에 대해** 접근권한을 가지는 도구를 사용할 수 있습니다. + +이 경우에 여러분이 **여러개의 컨테이너들**을 가지고 있다면, Prometheus가 **메트릭을 읽어 들일 때**, 디폴트로 **매번 하나의 컨테이너**(특정 리퀘스트를 관리하는 바로 그 컨테이너)로 부터 읽어들일 것입니다. 이는 모든 복제된 컨테이너에 대해 **축적된 메트릭들**을 읽어들이는 것과 대비됩니다. + +그렇다면 이 경우에는 **다중 프로세스**를 가지는 **하나의 컨테이너**를 두어서 같은 컨테이너에서 모든 내부 프로세스에 대한 Prometheus 메트릭을 수집하는 로컬 도구(예를 들어 Prometheus 익스포터 같은)를 두어서 이 메그릭들을 하나의 컨테이너에 내에서 공유하는 방법이 더 단순할 것입니다. + +--- + +요점은, 이 중의 **어느것도** 여러분들이 반드시 따라야하는 **확정된 사실**이 아니라는 것입니다. 여러분은 이 아이디어들을 **여러분의 고유한 이용 사례를 평가**하는데 사용하고, 여러분의 시스템에 가장 적합한 접근법이 어떤 것인지 결정하며, 다음의 개념들을 관리하는 방법을 확인할 수 있습니다: + +* 보안 - HTTPS +* 구동하기 +* 재시작 +* 복제 (실행 중인 프로세스 개수) +* 메모리 +* 시작하기 전 단계들 + +## 메모리 + +만약 여러분이 **컨테이너 당 단일 프로세스**를 실행한다면, 여러분은 각 컨테이너(복제된 경우에는 여러개의 컨테이너들)에 대해 잘 정의되고, 안정적이며, 제한된 용량의 메모리 소비량을 가지고 있을 것입니다. + +그러면 여러분의 컨테이너 관리 시스템(예를 들어 **쿠버네티스**) 설정에서 앞서 정의된 것과 같은 메모리 제한과 요구사항을 설정할 수 있습니다. 이런 방법으로 **가용 머신**이 필요로하는 메모리와 클러스터에 있는 가용 머신들을 염두에 두고 **컨테이너를 복제**할 수 있습니다. + +만약 여러분의 어플리케이션이 **단순**하다면, 이것은 **문제가 되지 않을** 것이고, 고정된 메모리 제한을 구체화할 필요도 없을 것입니다. 하지만 여러분의 어플리케이션이 (예를 들어 **머신 러닝** 모델같이) **많은 메모리를 소요한다면**, 어플리케이션이 얼마나 많은 양의 메모리를 사용하는지 확인하고 **각 머신에서** 사용하는 **컨테이너의 수**를 조정할 필요가 있습니다 (그리고 필요에 따라 여러분의 클러스터에 머신을 추가할 수 있습니다). + +만약 여러분이 **컨테이너 당 여러개의 프로세스**를 실행한다면 (예를 들어 공식 도커 이미지 처럼), 여러분은 시작된 프로세스 개수가 가용한 것 보다 **더 많은 메모리를 소비**하지 않는지 확인해야 합니다. + +## 시작하기 전 단계들과 컨테이너 + +만약 여러분이 컨테이너(예를 들어 도커, 쿠버네티스)를 사용한다면, 여러분이 접근할 수 있는 주요 방법은 크게 두가지가 있습니다. + +### 다중 컨테이너 + +만약 여러분이 **여러개의 컨테이너**를 가지고 있다면, 아마도 각각의 컨테이너는 **하나의 프로세스**를 가지고 있을 것입니다(예를 들어, **쿠버네티스** 클러스터에서). 그러면 여러분은 복제된 워커 컨테이너를 실행하기 **이전에**, 하나의 컨테이너에 있는 **이전의 단계들을** 수행하는 단일 프로세스를 가지는 **별도의 컨테이너들**을 가지고 싶을 것입니다. + +!!! 정보 + 만약 여러분이 쿠버네티스를 사용하고 있다면, 아마도 이는 Init Container일 것입니다. + +만약 여러분의 이용 사례에서 이전 단계들을 **병렬적으로 여러번** 수행하는데에 문제가 없다면 (예를 들어 데이터베이스 이전을 실행하지 않고 데이터베이스가 준비되었는지 확인만 하는 경우), 메인 프로세스를 시작하기 전에 이 단계들을 각 컨테이너에 넣을 수 있습니다. + +### 단일 컨테이너 + +만약 여러분의 셋업이 **다중 프로세스**(또는 하나의 프로세스)를 시작하는 **하나의 컨테이너**를 가지는 단순한 셋업이라면, 사전 단계들을 앱을 포함하는 프로세스를 시작하기 직전에 같은 컨테이너에서 실행할 수 있습니다. 공식 도커 이미지는 이를 내부적으로 지원합니다. + +## Gunicorn과 함께하는 공식 도커 이미지 - Uvicorn + +앞 챕터에서 자세하게 설명된 것 처럼, Uvicorn 워커와 같이 실행되는 Gunicorn을 포함하는 공식 도커 이미지가 있습니다: [서버 워커 - Uvicorn과 함께하는 Gunicorn](./server-workers.md){.internal-link target=_blank}. + +이 이미지는 주로 위에서 설명된 상황에서 유용할 것입니다: [다중 프로세스를 가지는 컨테이너와 특수한 경우들](#containers-with-multiple-processes-and-special-cases). + +* tiangolo/uvicorn-gunicorn-fastapi. + +!!! 경고 + 여러분이 이 베이스 이미지 또는 다른 유사한 이미지를 필요로 하지 **않을** 높은 가능성이 있으며, [위에서 설명된 것처럼: FastAPI를 위한 도커 이미지 빌드하기](#build-a-docker-image-for-fastapi) 처음부터 이미지를 빌드하는 것이 더 나을 수 있습니다. + +이 이미지는 가능한 CPU 코어에 기반한 **몇개의 워커 프로세스**를 설정하는 **자동-튜닝** 메커니즘을 포함하고 있습니다. + +이 이미지는 **민감한 디폴트** 값을 가지고 있지만, 여러분들은 여전히 **환경 변수** 또는 설정 파일을 통해 설정값을 수정하고 업데이트 할 수 있습니다. + +또한 스크립트를 통해 **시작하기 전 사전 단계**를 실행하는 것을 지원합니다. + +!!! 팁 + 모든 설정과 옵션을 보려면, 도커 이미지 페이지로 이동합니다: tiangolo/uvicorn-gunicorn-fastapi. + +### 공식 도커 이미지에 있는 프로세스 개수 + +이 이미지에 있는 **프로세스 개수**는 가용한 CPU **코어들**로 부터 **자동으로 계산**됩니다. + +이것이 의미하는 바는 이미지가 CPU로부터 **최대한의 성능**을 **쥐어짜낸다**는 것입니다. + +여러분은 이 설정 값을 **환경 변수**나 기타 방법들로 조정할 수 있습니다. + +그러나 프로세스의 개수가 컨테이너가 실행되고 있는 CPU에 의존한다는 것은 또한 **소요되는 메모리의 크기** 또한 이에 의존한다는 것을 의미합니다. + +그렇기 때문에, 만약 여러분의 어플리케이션이 많은 메모리를 요구하고 (예를 들어 머신러닝 모델처럼), 여러분의 서버가 CPU 코어 수는 많지만 **적은 메모리**를 가지고 있다면, 여러분의 컨테이너는 가용한 메모리보다 많은 메모리를 사용하려고 시도할 수 있으며, 결국 퍼포먼스를 크게 떨어뜨릴 수 있습니다(심지어 고장이 날 수도 있습니다). 🚨 + +### `Dockerfile` 생성하기 + +이 이미지에 기반해 `Dockerfile`을 생성하는 방법은 다음과 같습니다: + +```Dockerfile +FROM tiangolo/uvicorn-gunicorn-fastapi:python3.9 + +COPY ./requirements.txt /app/requirements.txt + +RUN pip install --no-cache-dir --upgrade -r /app/requirements.txt + +COPY ./app /app +``` + +### 더 큰 어플리케이션 + +만약 여러분이 [다중 파일을 가지는 더 큰 어플리케이션](../tutorial/bigger-applications.md){.internal-link target=_blank}을 생성하는 섹션을 따랐다면, 여러분의 `Dockerfile`은 대신 이렇게 생겼을 것입니다: + +```Dockerfile hl_lines="7" +FROM tiangolo/uvicorn-gunicorn-fastapi:python3.9 + +COPY ./requirements.txt /app/requirements.txt + +RUN pip install --no-cache-dir --upgrade -r /app/requirements.txt + +COPY ./app /app/app +``` + +### 언제 사용할까 + +여러분들이 **쿠버네티스**(또는 유사한 다른 도구) 사용하거나 클러스터 레벨에서 다중 컨테이너를 이용해 이미 **사본**을 설정하고 있다면, 공식 베이스 이미지(또는 유사한 다른 이미지)를 사용하지 **않는** 것 좋습니다. 그런 경우에 여러분은 다음에 설명된 것 처럼 **처음부터 이미지를 빌드하는 것**이 더 낫습니다: [FastAPI를 위한 도커 이미지 빌드하기](#build-a-docker-image-for-fastapi). + +이 이미지는 위의 [다중 프로세스를 가지는 컨테이너와 특수한 경우들](#containers-with-multiple-processes-and-special-cases)에서 설명된 특수한 경우에 대해서만 주로 유용할 것입니다. 예를 들어, 만약 여러분의 어플리케이션이 **충분히 단순**해서 CPU에 기반한 디폴트 프로세스 개수를 설정하는 것이 잘 작동한다면, 클러스터 레벨에서 수동으로 사본을 설정할 필요가 없을 것이고, 여러분의 앱에서 하나 이상의 컨테이너를 실행하지도 않을 것입니다. 또는 만약에 여러분이 **도커 컴포즈**로 배포하거나, 단일 서버에서 실행하거나 하는 경우에도 마찬가지입니다. + +## 컨테이너 이미지 배포하기 + +컨테이너 (도커) 이미지를 완성한 뒤에 이를 배포하는 방법에는 여러가지 방법이 있습니다. + +예를 들어: + +* 단일 서버에서 **도커 컴포즈**로 배포하기 +* **쿠버네티스** 클러스터로 배포하기 +* 도커 스왐 모드 클러스터로 배포하기 +* 노마드 같은 다른 도구로 배포하기 +* 여러분의 컨테이너 이미지를 배포해주는 클라우드 서비스로 배포하기 + +## Poetry의 도커 이미지 + +만약 여러분들이 프로젝트 의존성을 관리하기 위해 Poetry를 사용한다면, 도커의 멀티-스테이지 빌딩을 사용할 수 있습니다: + +```{ .dockerfile .annotate } +# (1) +FROM python:3.9 as requirements-stage + +# (2) +WORKDIR /tmp + +# (3) +RUN pip install poetry + +# (4) +COPY ./pyproject.toml ./poetry.lock* /tmp/ + +# (5) +RUN poetry export -f requirements.txt --output requirements.txt --without-hashes + +# (6) +FROM python:3.9 + +# (7) +WORKDIR /code + +# (8) +COPY --from=requirements-stage /tmp/requirements.txt /code/requirements.txt + +# (9) +RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt + +# (10) +COPY ./app /code/app + +# (11) +CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "80"] +``` + +1. 첫 스테이지로, `requirements-stage`라고 이름 붙였습니다. + +2. `/tmp`를 현재의 워킹 디렉터리로 설정합니다. + + 이 위치에 우리는 `requirements.txt` 파일을 생성할 것입니다. + +3. 이 도커 스테이지에서 Poetry를 설치합니다. + +4. 파일 `pyproject.toml`와 `poetry.lock`를 `/tmp` 디렉터리로 복사합니다. + + `./poetry.lock*` (`*`로 끝나는) 파일을 사용하기 때문에, 파일이 아직 사용가능하지 않더라도 고장나지 않을 것입니다. + +5. `requirements.txt` 파일을 생성합니다. + +6. 이것이 마지막 스테이지로, 여기에 위치한 모든 것이 마지막 컨테이너 이미지에 포함될 것입니다. + +7. 현재의 워킹 디렉터리를 `/code`로 설정합니다. + +8. 파일 `requirements.txt`를 `/code` 디렉터리로 복사합니다. + + 이 파일은 오직 이전의 도커 스테이지에만 존재하며, 때문에 복사하기 위해서 `--from-requirements-stage` 옵션이 필요합니다. + +9. 생성된 `requirements.txt` 파일에 패키지 의존성을 설치합니다. + +10. `app` 디렉터리를 `/code` 디렉터리로 복사합니다. + +11. `uvicorn` 커맨드를 실행하여, `app.main`에서 불러온 `app` 객체를 사용하도록 합니다. + +!!! 팁 + 버블 숫자를 클릭해 각 줄이 하는 일을 알아볼 수 있습니다. + +**도커 스테이지**란 `Dockefile`의 일부로서 나중에 사용하기 위한 파일들을 생성하기 위한 **일시적인 컨테이너 이미지**로 작동합니다. + +첫 스테이지는 오직 **Poetry를 설치**하고 Poetry의 `pyproject.toml` 파일로부터 프로젝트 의존성을 위한 **`requirements.txt`를 생성**하기 위해 사용됩니다. + +이 `requirements.txt` 파일은 **다음 스테이지**에서 `pip`로 사용될 것입니다. + +마지막 컨테이너 이미지에는 **오직 마지막 스테이지만** 보존됩니다. 이전 스테이지(들)은 버려집니다. + +Poetry를 사용할 때 **도커 멀티-스테이지 빌드**를 사용하는 것이 좋은데, 여러분들의 프로젝트 의존성을 설치하기 위해 마지막 컨테이너 이미지에 **오직** `requirements.txt` 파일만 필요하지, Poetry와 그 의존성은 있을 필요가 없기 때문입니다. + +이 다음 (또한 마지막) 스테이지에서 여러분들은 이전에 설명된 것과 비슷한 방식으로 방식으로 이미지를 빌드할 수 있습니다. + +### TLS 종료 프록시의 배후 - Poetry + +이전에 언급한 것과 같이, 만약 여러분이 컨테이너를 Nginx 또는 Traefik과 같은 TLS 종료 프록시 (로드 밸런서) 뒤에서 실행하고 있다면, 커맨드에 `--proxy-headers` 옵션을 추가합니다: + +```Dockerfile +CMD ["uvicorn", "app.main:app", "--proxy-headers", "--host", "0.0.0.0", "--port", "80"] +``` + +## 요약 + +컨테이너 시스템(예를 들어 **도커**나 **쿠버네티스**)을 사용하여 모든 **배포 개념**을 다루는 것은 꽤 간단합니다: + +* HTTPS +* 구동하기 +* 재시작 +* 복제 (실행 중인 프로세스 개수) +* 메모리 +* 시작하기 전 단계들 + +대부분의 경우에서 여러분은 어떤 베이스 이미지도 사용하지 않고 공식 파이썬 도커 이미지에 기반해 **처음부터 컨테이너 이미지를 빌드**할 것입니다. + +`Dockerfile`에 있는 지시 사항을 **순서대로** 다루고 **도커 캐시**를 사용하는 것으로 여러분은 **빌드 시간을 최소화**할 수 있으며, 이로써 생산성을 최대화할 수 있습니다 (그리고 지루함을 피할 수 있죠) 😎 + +특별한 경우에는, FastAPI를 위한 공식 도커 이미지를 사용할 수도 있습니다. 🤓 diff --git a/docs/ko/mkdocs.yml b/docs/ko/mkdocs.yml index 50931e134cf06..b2a307bf30a88 100644 --- a/docs/ko/mkdocs.yml +++ b/docs/ko/mkdocs.yml @@ -69,6 +69,8 @@ nav: - tutorial/request-files.md - tutorial/request-forms-and-files.md - tutorial/encoder.md +- 배포하기: + - deployment/docker.md markdown_extensions: - toc: permalink: true