diff --git a/README.md b/README.md index 30bc6d870bbf0..96a80fb22d8e4 100644 --- a/README.md +++ b/README.md @@ -335,6 +335,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. 1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. +1. **[PEGASUS-X](https://huggingface.co/docs/transformers/main/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu. 1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira. 1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. 1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang. diff --git a/README_ko.md b/README_ko.md index cc0b790ad76a8..a0df54a86c1a9 100644 --- a/README_ko.md +++ b/README_ko.md @@ -291,6 +291,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. 1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. +1. **[PEGASUS-X](https://huggingface.co/docs/transformers/main/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, Peter J. Liu. 1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira. 1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. 1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang. diff --git a/README_zh-hans.md b/README_zh-hans.md index fe2fa45f71f39..1141748161510 100644 --- a/README_zh-hans.md +++ b/README_zh-hans.md @@ -315,6 +315,7 @@ conda install -c huggingface transformers 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (来自 Meta AI) 伴随论文 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 由 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 发布。 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (来自 Google AI) 伴随论文 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 由 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 发布。 1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。 +1. **[PEGASUS-X](https://huggingface.co/docs/transformers/main/model_doc/pegasus_x)** (来自 Google) 伴随论文 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 由 Jason Phang, Yao Zhao, Peter J. Liu 发布。 1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (来自 Deepmind) 伴随论文 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 由 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 发布。 1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (来自 VinAI Research) 伴随论文 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 由 Dat Quoc Nguyen and Anh Tuan Nguyen 发布。 1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (来自 UCLA NLP) 伴随论文 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 由 Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 发布。 diff --git a/README_zh-hant.md b/README_zh-hant.md index 4f5a995476149..c0444b8ba6a1b 100644 --- a/README_zh-hant.md +++ b/README_zh-hant.md @@ -327,6 +327,7 @@ conda install -c huggingface transformers 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. 1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. +1. **[PEGASUS-X](https://huggingface.co/docs/transformers/main/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, Peter J. Liu. 1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira. 1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. 1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang. diff --git a/docs/source/en/_toctree.yml b/docs/source/en/_toctree.yml index 78137d2c8a74c..c85e7a9ffb3af 100644 --- a/docs/source/en/_toctree.yml +++ b/docs/source/en/_toctree.yml @@ -286,6 +286,8 @@ title: OPT - local: model_doc/pegasus title: Pegasus + - local: model_doc/pegasus_x + title: PEGASUS-X - local: model_doc/phobert title: PhoBERT - local: model_doc/plbart diff --git a/docs/source/en/index.mdx b/docs/source/en/index.mdx index 17c04376780af..1f70283e21419 100644 --- a/docs/source/en/index.mdx +++ b/docs/source/en/index.mdx @@ -133,6 +133,7 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret 1. **[OPT](master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. 1. **[OWL-ViT](model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. 1. **[Pegasus](model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. +1. **[PEGASUS-X](model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu. 1. **[Perceiver IO](model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira. 1. **[PhoBERT](model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. 1. **[PLBart](model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang. @@ -270,6 +271,7 @@ Flax), PyTorch, and/or TensorFlow. | OPT | ❌ | ❌ | ✅ | ✅ | ✅ | | OWL-ViT | ❌ | ❌ | ✅ | ❌ | ❌ | | Pegasus | ✅ | ✅ | ✅ | ✅ | ✅ | +| PEGASUS-X | ❌ | ❌ | ✅ | ❌ | ❌ | | Perceiver | ✅ | ❌ | ✅ | ❌ | ❌ | | PLBart | ✅ | ❌ | ✅ | ❌ | ❌ | | PoolFormer | ❌ | ❌ | ✅ | ❌ | ❌ | diff --git a/docs/source/en/model_doc/pegasus_x.mdx b/docs/source/en/model_doc/pegasus_x.mdx new file mode 100644 index 0000000000000..c3527c9e01a61 --- /dev/null +++ b/docs/source/en/model_doc/pegasus_x.mdx @@ -0,0 +1,45 @@ + + +# PEGASUS-X + +## Overview + +The PEGASUS-X model was proposed in [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao and Peter J. Liu. + +PEGASUS-X (PEGASUS eXtended) extends the PEGASUS models for long input summarization through additional long input pretraining and using staggered block-local attention with global tokens in the encoder. + +The abstract from the paper is the following: + +*While large pretrained Transformer models have proven highly capable at tackling natural language tasks, handling long sequence inputs continues to be a significant challenge. One such task is long input summarization, where inputs are longer than the maximum input context of most pretrained models. Through an extensive set of experiments, we investigate what model architectural changes and pretraining paradigms can most efficiently adapt a pretrained Transformer for long input summarization. We find that a staggered, block-local Transformer with global encoder tokens strikes a good balance of performance and efficiency, and that an additional pretraining phase on long sequences meaningfully improves downstream summarization performance. Based on our findings, we introduce PEGASUS-X, an extension of the PEGASUS model with additional long input pretraining to handle inputs of up to 16K tokens. PEGASUS-X achieves strong performance on long input summarization tasks comparable with much larger models while adding few additional parameters and not requiring model parallelism to train.* + +Tips: + +* PEGASUS-X uses the same tokenizer as PEGASUS. + +This model was contributed by [zphang](>> from transformers import PegasusXModel, PegasusXConfig + + >>> # Initializing a PEGASUS google/pegasus-x-large style configuration + >>> configuration = PegasusXConfig() + + >>> # Initializing a model from the google/pegasus-x-large style configuration + >>> model = PegasusXModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + model_type = "pegasus_x" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} + + def __init__( + self, + vocab_size=96103, + max_position_embeddings=16384, + encoder_layers=16, + encoder_ffn_dim=4096, + encoder_attention_heads=16, + decoder_layers=16, + decoder_ffn_dim=4096, + decoder_attention_heads=16, + encoder_layerdrop=0.0, + decoder_layerdrop=0.0, + use_cache=True, + is_encoder_decoder=True, + activation_function="gelu", + d_model=1024, + dropout=0.1, + attention_dropout=0.0, + activation_dropout=0.0, + init_std=0.02, + decoder_start_token_id=0, + classifier_dropout=0.0, + scale_embedding=True, + pad_token_id=0, + eos_token_id=1, + forced_eos_token_id=1, + num_global_tokens=32, + block_size=512, + stagger_local_blocks=True, + **kwargs + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.d_model = d_model + self.encoder_ffn_dim = encoder_ffn_dim + self.encoder_layers = encoder_layers + self.encoder_attention_heads = encoder_attention_heads + self.decoder_ffn_dim = decoder_ffn_dim + self.decoder_layers = decoder_layers + self.decoder_attention_heads = decoder_attention_heads + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.activation_function = activation_function + self.init_std = init_std + self.encoder_layerdrop = encoder_layerdrop + self.decoder_layerdrop = decoder_layerdrop + self.classifier_dropout = classifier_dropout + self.use_cache = use_cache + self.num_hidden_layers = encoder_layers + self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True + + self.num_global_tokens = num_global_tokens + self.block_size = block_size + self.stagger_local_blocks = stagger_local_blocks + + super().__init__( + pad_token_id=pad_token_id, + eos_token_id=eos_token_id, + is_encoder_decoder=is_encoder_decoder, + decoder_start_token_id=decoder_start_token_id, + forced_eos_token_id=forced_eos_token_id, + **kwargs, + ) + + @property + def num_attention_heads(self) -> int: + return self.encoder_attention_heads + + @property + def hidden_size(self) -> int: + return self.d_model diff --git a/src/transformers/models/pegasus_x/modeling_pegasus_x.py b/src/transformers/models/pegasus_x/modeling_pegasus_x.py new file mode 100755 index 0000000000000..8feac435715e4 --- /dev/null +++ b/src/transformers/models/pegasus_x/modeling_pegasus_x.py @@ -0,0 +1,1692 @@ +# coding=utf-8 +# Copyright 2022, Google and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch PEGASUS-X model.""" + +import dataclasses +import math +import random +from typing import Optional, Tuple, Union + +import numpy as np +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPastAndCrossAttentions, + Seq2SeqLMOutput, + Seq2SeqModelOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_end_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_pegasus_x import PegasusXConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "google/pegasus-x-base" +_CONFIG_FOR_DOC = "PegasusXConfig" +_TOKENIZER_FOR_DOC = "PegasusTokenizer" + + +PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "google/pegasus-x-base", + "google/pegasus-x-large", + # See all PEGASUS models at https://huggingface.co/models?filter=pegasus-x +] + + +@dataclasses.dataclass +class DimensionInfo: + """Wrapper for dimension info.""" + + batch_size: int # batch size + seq_len: int # token length + block_size: int # block size + num_heads: int # num heads + hidden_dim: int # hidden dim + dim_per_head: int # dim per head + num_blocks: int # num blocks + global_len: int # global length + padded_seq_len: int # padded token seq length + + # Note: Compared to the original Flax implementation, we will pad the token representations to + # a multiple of block size at the start of the encoder layers, so T=P always. + + +# Copied from transformers.models.bart.modeling_bart.shift_tokens_right +def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): + """ + Shift input ids one token to the right. + """ + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() + shifted_input_ids[:, 0] = decoder_start_token_id + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + return shifted_input_ids + + +# Copied from transformers.models.bart.modeling_bart._make_causal_mask +def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0): + """ + Make causal mask used for bi-directional self-attention. + """ + bsz, tgt_len = input_ids_shape + mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min)) + mask_cond = torch.arange(mask.size(-1)) + mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) + mask = mask.to(dtype) + + if past_key_values_length > 0: + mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1) + return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) + + +# Copied from transformers.models.bart.modeling_bart._expand_mask +def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + bsz, src_len = mask.size() + tgt_len = tgt_len if tgt_len is not None else src_len + + expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) + + inverted_mask = 1.0 - expanded_mask + + return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) + + +class PegasusXSinusoidalPositionalEmbedding(nn.Module): + """This module produces sinusoidal positional embeddings of any length.""" + + def __init__(self, embed_dim, max_scale: int = 10000.0): + super().__init__() + self.embed_dim = embed_dim + self.max_scale = max_scale + + @torch.no_grad() + def forward(self, input_embeds: torch.Tensor, past_key_values_length: int = 0) -> torch.Tensor: + """`input_ids_shape` is expected to be [bsz x seqlen].""" + batch_size, seq_len = input_embeds.shape[:2] + positions = torch.arange( + past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=input_embeds.device + )[:, None] + pe = torch.zeros((seq_len, self.embed_dim), device=input_embeds.device, dtype=input_embeds.dtype) + half_d_feature = self.embed_dim // 2 + div_term = torch.exp( + torch.arange(half_d_feature, device=input_embeds.device, dtype=input_embeds.dtype) + * -(np.log(float(self.max_scale)) / (half_d_feature - 1)) + ) + pe[:, :half_d_feature] = torch.sin(positions * div_term) + pe[:, half_d_feature:] = torch.cos(positions * div_term) + return pe[None].expand(batch_size, -1, -1) + + +# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->PegasusX +class PegasusXAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned aross GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +class PegasusXGlobalLocalAttention(nn.Module): + """Global + Local attention. For use with Encoder only.""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + block_size: int, + dropout: float = 0.0, + is_decoder: bool = False, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.block_size = block_size + self.dropout = dropout + self.head_dim = embed_dim // num_heads + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=False) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=False) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=False) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + token_hidden_states: torch.Tensor, + global_hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: + """Input shape: Batch x Time x Channel""" + dim = DimensionInfo( + batch_size=token_hidden_states.shape[0], + seq_len=token_hidden_states.shape[1], + block_size=self.block_size, + num_heads=self.num_heads, + hidden_dim=token_hidden_states.shape[2], + dim_per_head=self.head_dim, + num_blocks=token_hidden_states.shape[1] // self.block_size, + global_len=global_hidden_states.shape[1], + padded_seq_len=token_hidden_states.shape[1], + ) + + # [batch_size, num_heads, padded_seq_len, dim_per_head] + local_q = self._shape( + self.q_proj(token_hidden_states) * self.scaling, + seq_len=dim.padded_seq_len, + bsz=dim.batch_size, + ) + local_k = self._shape( + self.k_proj(token_hidden_states), + seq_len=dim.padded_seq_len, + bsz=dim.batch_size, + ) + local_v = self._shape( + self.v_proj(token_hidden_states), + seq_len=dim.padded_seq_len, + bsz=dim.batch_size, + ) + + # [batch_size, num_heads, global_len, dim_per_head] + global_q = self._shape( + self.q_proj(global_hidden_states) * self.scaling, + seq_len=dim.global_len, + bsz=dim.batch_size, + ) + global_k = self._shape( + self.k_proj(global_hidden_states), + seq_len=dim.global_len, + bsz=dim.batch_size, + ) + global_v = self._shape( + self.v_proj(global_hidden_states), + seq_len=dim.global_len, + bsz=dim.batch_size, + ) + + global_attn_output, global_attn_probs = self.compute_global_attention_representations( + global_q=global_q, + global_k=global_k, + global_v=global_v, + local_k=local_k, + local_v=local_v, + mask=attention_mask, + dim=dim, + ) + local_attn_output, local_attn_probs = self.compute_local_attention_representations( + global_k=global_k, + global_v=global_v, + local_q=local_q, + local_k=local_k, + local_v=local_v, + mask=attention_mask, + dim=dim, + ) + + # [batch_size, global_len, hidden_dim] + global_attn_output = ( + global_attn_output.transpose(1, 2).contiguous().view(dim.batch_size, dim.global_len, dim.hidden_dim) + ) + # [batch_size, global_len, hidden_dim] + global_attn_output = self.out_proj(global_attn_output) + # [batch_size, num_heads, block_size, num_heads, dim_per_head] + local_attn_output = local_attn_output.permute(0, 2, 3, 1, 4).contiguous() + # [batch_size, padded_seq_len, hidden_dim] + local_attn_output = local_attn_output.view(dim.batch_size, dim.padded_seq_len, dim.hidden_dim) + # [batch_size, padded_seq_len, hidden_dim] + local_attn_output = self.out_proj(local_attn_output) + + if output_attentions: + attn_probs = {"global": global_attn_probs, "local": local_attn_probs} + else: + attn_probs = None + + return local_attn_output, global_attn_output, attn_probs + + def compute_global_attention_representations( + self, global_q, global_k, global_v, local_k, local_v, mask, dim: DimensionInfo + ): + """Compute attention representations for global tokens. + + Global tokens will attend to both global tokens as well as all input sequence tokens. Because the input + sequence tokens are arranged in blocks for local attention, we unblock them and compute attention. + + Args: + global_q (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]: + query vectors from global tokens + global_k (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]: + key vectors from global tokens + global_v (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]: + value vectors from global tokens + local_k (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]: + key vectors from local tokens + local_v (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]: + value vectors from local tokens + mask (`torch.FloatTensor`) of shape [batch_size, padded_seq_len]: attention mask + dim (DimensionInfo): DimensionInfo wrapper for dimensions + + Returns: + output of shape `[batch_sizes, length, features]`. where length will be padded to a multiple of block_size + """ + # [batch_size, num_heads, global_len+padded_seq_len, dim_per_head] + global_and_local_k = torch.cat([global_k, local_k], dim=2) + # [batch_size, num_heads, global_len+padded_seq_len, dim_per_head] + global_and_local_v = torch.cat([global_v, local_v], dim=2) + + # [batch_size, global_len+padded_seq_len] + extended_mask = nn.functional.pad(mask, pad=(dim.global_len, 0), value=0) + + # [batch_size, num_heads, global_len, global_len+padded_seq_len] + attn_weights = torch.einsum("BHGF,BHXF->BHGX", global_q, global_and_local_k) + attn_weights = attn_weights + extended_mask[:, None, None, :] + attn_probs = nn.functional.softmax(attn_weights, dim=-1) + attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training) + + # [batch_size, num_heads, global_len, F] + attn_output = torch.einsum("BHGX,BHXF->BHGF", attn_probs, global_and_local_v) + return attn_output, attn_probs + + def compute_local_attention_representations( + self, global_k, global_v, local_q, local_k, local_v, mask, dim: DimensionInfo + ): + """Compute attention representations for local tokens. + + Local tokens will attend to both global tokens as well as all other tokens within the same local block. Hence, + we need to tile and concatenate the global tokens to every local block + + Args: + global_k (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]: + key vectors from global tokens + global_v (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]: + value vectors from global tokens + local_q (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]: + query vectors from local tokens + local_k (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]: + key vectors from local tokens + local_v (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]: + value vectors from local tokens + mask (`torch.FloatTensor`) of shape [batch_size, padded_seq_len]: attention mask + dim (DimensionInfo): DimensionInfo wrapper for dimensions + + Returns: + output of shape `[batch_sizes, length, features]`. where length will be padded to a multiple of block_size + """ + # [batch_size, num_heads, num_blocks, block_size, dim_per_head] + blocked_local_q = local_q.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head) + # [batch_size, num_heads, num_blocks, block_size, dim_per_head] + blocked_local_k = local_k.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head) + # [batch_size, num_heads, num_blocks, block_size, dim_per_head] + blocked_local_v = local_v.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head) + + # [batch_size, num_blocks, global_len+block_size] + extended_mask = nn.functional.pad( + mask.view(dim.batch_size, dim.num_blocks, dim.block_size), + pad=(dim.global_len, 0), + value=0, + ) + + # [batch_size, num_heads, num_blocks, block_size, global_len] + blocked_local2global = torch.einsum("BHNKF,BHGF->BHNKG", blocked_local_q, global_k) + # [batch_size, num_heads, num_blocks, block_size, block_size] + blocked_local2local = torch.einsum("BHNKF,BHNXF->BHNKX", blocked_local_q, blocked_local_k) + + # [batch_size, num_heads, num_blocks, block_size, global_len+block_size] + attn_weights = torch.cat([blocked_local2global, blocked_local2local], dim=-1) + attn_weights = attn_weights + extended_mask[:, None, :, None, :] + attn_probs = nn.functional.softmax(attn_weights, dim=-1) + attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training) + + # [batch_size, num_heads, num_blocks, block_size, global_len] + local2global_attn_probs = attn_probs[:, :, :, :, : dim.global_len] + # [batch_size, num_heads, num_blocks, block_size, block_size] + local2local_attn_probs = attn_probs[:, :, :, :, dim.global_len :] + + # [batch_size, num_heads, num_blocks, block_size, dim_per_head] + local2global_attn_output = torch.einsum("BHNKG,BHGF->BHNKF", local2global_attn_probs, global_v) + # [batch_size, num_heads, num_blocks, block_size, dim_per_head] + local2local_attn_output = torch.einsum("BHNKX,BHNXF->BHNKF", local2local_attn_probs, blocked_local_v) + # [batch_size, num_heads, num_blocks, block_size, dim_per_head] + attn_output = local2global_attn_output + local2local_attn_output + return attn_output, attn_probs + + +class PegasusXEncoderLayer(nn.Module): + def __init__(self, stagger_blocks_this_layer: bool, config: PegasusXConfig): + super().__init__() + self.embed_dim = config.d_model + self.self_attn = PegasusXGlobalLocalAttention( + embed_dim=self.embed_dim, + num_heads=config.encoder_attention_heads, + block_size=config.block_size, + dropout=config.attention_dropout, + ) + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.global_self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) + self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + self.stagger_blocks_this_layer = stagger_blocks_this_layer + self.block_size = config.block_size + + def forward( + self, + hidden_states: torch.Tensor, + global_hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + output_attentions: bool = False, + ) -> torch.Tensor: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)* + global_hidden_states (`torch.FloatTensor`): global token hidden states + *(seq_len, num_global_tokens, embed_dim)* + attention_mask (`torch.FloatTensor`): attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + global_residual = global_hidden_states + + hidden_states = self.self_attn_layer_norm(hidden_states) + global_hidden_states = self.global_self_attn_layer_norm(global_hidden_states) + + if self.stagger_blocks_this_layer: + # Pad the blocks to simulate staggering + hidden_states, attention_mask = self.pad_local_tokens( + hidden_states=hidden_states, attention_mask=attention_mask, block_size=self.block_size + ) + + hidden_states, global_hidden_states, attn_weights = self.self_attn( + token_hidden_states=hidden_states, + global_hidden_states=global_hidden_states, + attention_mask=attention_mask, + output_attentions=output_attentions, + ) + + if self.stagger_blocks_this_layer: + # Undo the padding + hidden_states = self.unpad_local_tokens(padded_hidden_states=hidden_states, block_size=self.block_size) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + global_hidden_states = nn.functional.dropout(global_hidden_states, p=self.dropout, training=self.training) + global_hidden_states = global_residual + global_hidden_states + + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + global_residual = global_hidden_states + global_hidden_states = self.final_layer_norm(global_hidden_states) + global_hidden_states = self.activation_fn(self.fc1(global_hidden_states)) + global_hidden_states = nn.functional.dropout( + global_hidden_states, p=self.activation_dropout, training=self.training + ) + global_hidden_states = self.fc2(global_hidden_states) + global_hidden_states = nn.functional.dropout(global_hidden_states, p=self.dropout, training=self.training) + global_hidden_states = global_residual + global_hidden_states + outputs = (hidden_states, global_hidden_states) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + @classmethod + def pad_local_tokens(cls, hidden_states, attention_mask, block_size): + # hidden_states: [batch_size, seq_len, hidden_dim] + pad_size = block_size // 2 + mask_min_value = torch.finfo(hidden_states.dtype).min + padded_hidden_states = torch.nn.functional.pad( + hidden_states, + pad=(0, 0, pad_size, pad_size), + ) + padded_mask = torch.nn.functional.pad( + attention_mask, + pad=(pad_size, pad_size), + value=mask_min_value, + ) + return padded_hidden_states, padded_mask + + @classmethod + def unpad_local_tokens(cls, padded_hidden_states, block_size): + # padded_hidden_states: [batch_size, padded seq_len, hidden_dim] + pad_size = block_size // 2 + return padded_hidden_states[:, pad_size:-pad_size, :] + + +class PegasusXDecoderLayer(nn.Module): + def __init__(self, config: PegasusXConfig): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = PegasusXAttention( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + bias=False, + ) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.encoder_attn = PegasusXAttention( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + bias=False, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) + self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = True, + ) -> torch.Tensor: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)* + attention_mask (`torch.FloatTensor`): attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + encoder_hidden_states (`torch.FloatTensor`): + cross attention input to the layer of shape *(seq_len, batch, embed_dim)* + encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache: Whether to us KV cache for decoding + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +class PegasusXPreTrainedModel(PreTrainedModel): + config_class = PegasusXConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + std = self.config.init_std + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, (PegasusXDecoder, PegasusXEncoder)): + module.gradient_checkpointing = value + + +PEGASUS_X_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`PegasusXConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +PEGASUS_X_GENERATION_EXAMPLE = r""" + Summarization example: + + ```python + >>> from transformers import PegasusTokenizer, PegasusXForConditionalGeneration + + >>> model = PegasusXForConditionalGeneration.from_pretrained("google/pegasus-x-base") + >>> tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-x-large") + + >>> ARTICLE_TO_SUMMARIZE = ( + ... "PG&E stated it scheduled the blackouts in response to forecasts for high winds " + ... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were " + ... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow." + ... ) + >>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="pt") + + >>> # Generate Summary + >>> summary_ids = model.generate(inputs["input_ids"]) + >>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "California's largest electricity provider has turned off power to hundreds of thousands of customers." + ``` +""" + +PEGASUS_X_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`PegasusTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`PegasusTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + PEGASUS-X uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape + `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you + can choose to directly pass an embedded representation. This is useful if you want more control over how to + convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + + If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value + of `inputs_embeds`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class PegasusXEncoder(PegasusXPreTrainedModel): + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`PegasusXEncoderLayer`]. + + Args: + config: PegasusXConfig + embed_tokens (nn.Embedding): output embedding + """ + + def __init__(self, config: PegasusXConfig, embed_tokens: Optional[nn.Embedding] = None): + super().__init__(config) + + self.dropout = config.dropout + self.layerdrop = config.encoder_layerdrop + + embed_dim = config.d_model + self.max_source_positions = config.max_position_embeddings + self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 + + if embed_tokens is not None: + self.embed_tokens = embed_tokens + else: + self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim) + + self.embed_global = nn.Embedding(config.num_global_tokens, embed_dim) + self.embed_positions = PegasusXSinusoidalPositionalEmbedding(embed_dim) + self.layers = nn.ModuleList( + [ + PegasusXEncoderLayer( + stagger_blocks_this_layer=i % 2 == 1 and config.stagger_local_blocks, config=config + ) + for i in range(config.encoder_layers) + ] + ) + self.layer_norm = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def resize_position_embeddings(self, new_num_position_embeddings: int): + """ + Resizes position embeddings matrix of the model if `new_num_position_embeddings != + config.max_position_embeddings`. + + Arguments: + new_num_position_embeddings (`int`): + The number of new position embeddings. If position embeddings are learned, increasing the size will add + newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If + position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will + add correct vectors at the end following the position encoding algorithm, whereas reducing the size + will remove vectors from the end. + """ + logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...") + self.config.max_position_embeddings = new_num_position_embeddings + + self.embed_positions = PegasusXSinusoidalPositionalEmbedding(self.config.d_model) + self.embed_positions.to(self.device) + + def get_position_embeddings(self) -> nn.Embedding: + """ + Returns the position embeddings matrix + """ + return self.embed_positions + + def forward( + self, + input_ids=None, + attention_mask=None, + inputs_embeds=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`PegasusTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + embed_pos = self.embed_positions(inputs_embeds) + + hidden_states = inputs_embeds + embed_pos + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + batch_size, seq_len, _ = hidden_states.shape + + # Setup mask + if attention_mask is None: + attention_mask = torch.ones(*input_shape, dtype=inputs_embeds.dtype, device=inputs_embeds.device) + attention_mask = attention_mask.to(dtype=hidden_states.dtype) + mask_min_value = torch.finfo(hidden_states.dtype).min + inverted_mask = 1.0 - attention_mask + attention_mask = inverted_mask.masked_fill( + inverted_mask.to(torch.bool), + mask_min_value, + ) + + # padding to block_size + if seq_len % self.config.block_size != 0: + pad_len = self.config.block_size - seq_len % self.config.block_size + hidden_states = nn.functional.pad(hidden_states, pad=(0, 0, 0, pad_len), value=0) + attention_mask = nn.functional.pad(attention_mask, pad=(0, pad_len), value=mask_min_value) + + # Global tokens + global_hidden_states = self.embed_global( + torch.arange(self.config.num_global_tokens, device=hidden_states.device)[None].expand(batch_size, -1) + ) + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if self.training and (dropout_probability < self.layerdrop): # skip the layer + layer_outputs = (None, None) + else: + if self.gradient_checkpointing and self.training: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs, output_attentions) + + return custom_forward + + layer_outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(encoder_layer), + hidden_states, + global_hidden_states, + attention_mask, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + global_hidden_states, + attention_mask, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + global_hidden_states = layer_outputs[1] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[2],) + + # Undo padding-to-block-size + hidden_states = hidden_states[:, :seq_len] + + hidden_states = self.layer_norm(hidden_states) + + if output_hidden_states: + encoder_states = encoder_states + ((hidden_states, global_hidden_states),) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + +class PegasusXDecoder(PegasusXPreTrainedModel): + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`PegasusDecoderLayer`] + + Args: + config: PegasusXConfig + embed_tokens (nn.Embedding): output embedding + """ + + def __init__(self, config: PegasusXConfig, embed_tokens: Optional[nn.Embedding] = None): + super().__init__(config) + self.dropout = config.dropout + self.layerdrop = config.decoder_layerdrop + self.max_target_positions = config.max_position_embeddings + self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 + + if embed_tokens is not None: + self.embed_tokens = embed_tokens + else: + self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model) + + self.embed_positions = PegasusXSinusoidalPositionalEmbedding(config.d_model) + self.layers = nn.ModuleList([PegasusXDecoderLayer(config) for _ in range(config.decoder_layers)]) + self.layer_norm = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask + def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): + # create causal mask + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + combined_attention_mask = None + if input_shape[-1] > 1: + combined_attention_mask = _make_causal_mask( + input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length + ).to(inputs_embeds.device) + + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( + inputs_embeds.device + ) + combined_attention_mask = ( + expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask + ) + + return combined_attention_mask + + def resize_position_embeddings(self, new_num_position_embeddings: int): + """ + Resizes position embeddings matrix of the model if `new_num_position_embeddings != + config.max_position_embeddings`. + + Arguments: + new_num_position_embeddings (`int`): + The number of new position embeddings. If position embeddings are learned, increasing the size will add + newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If + position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will + add correct vectors at the end following the position encoding algorithm, whereas reducing the size + will remove vectors from the end. + """ + logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...") + self.config.max_position_embeddings = new_num_position_embeddings + + self.embed_positions = PegasusXSinusoidalPositionalEmbedding(self.config.d_model) + self.embed_positions.to(self.device) + + def get_position_embeddings(self) -> nn.Embedding: + """ + Returns the position embeddings matrix + """ + return self.embed_positions + + def forward( + self, + input_ids=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + inputs_embeds=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`PegasusTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of + shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing + `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more + control over how to convert `input_ids` indices into associated vectors than the model's internal + embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + attention_mask = self._prepare_decoder_attention_mask( + attention_mask, input_shape, inputs_embeds, past_key_values_length + ) + + # expand encoder attention mask + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) + + # embed positions + positions = self.embed_positions(inputs_embeds, past_key_values_length) + + hidden_states = inputs_embeds + positions + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + next_decoder_cache = () if use_cache else None + + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + dropout_probability = random.uniform(0, 1) + if self.training and (dropout_probability < self.layerdrop): + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + + if use_cache: + logger.warning( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + def create_custom_forward(module): + def custom_forward(*inputs): + # None for past_key_value + return module(*inputs, output_attentions, use_cache) + + return custom_forward + + layer_outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(decoder_layer), + hidden_states, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + None, + ) + else: + + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + hidden_states = self.layer_norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + +@add_start_docstrings( + "The bare PEGASUS-X Model outputting raw hidden-states without any specific head on top.", + PEGASUS_X_START_DOCSTRING, +) +class PegasusXModel(PegasusXPreTrainedModel): + def __init__(self, config: PegasusXConfig): + super().__init__(config) + + vocab_size = config.vocab_size + self.shared = nn.Embedding(vocab_size, config.d_model) + + self.encoder = PegasusXEncoder(config, self.shared) + self.decoder = PegasusXDecoder(config, self.shared) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, value): + self.shared = value + self.encoder.embed_tokens = self.shared + self.decoder.embed_tokens = self.shared + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + def resize_position_embeddings(self, new_num_position_embeddings: int): + """ + Resizes position embeddings matrix of the model if `new_num_position_embeddings != + config.max_position_embeddings`. + + Arguments: + new_num_position_embeddings (`int`): + The number of new position embeddings. If position embeddings are learned, increasing the size will add + newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If + position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will + add correct vectors at the end following the position encoding algorithm, whereas reducing the size + will remove vectors from the end. + """ + self.config.max_position_embeddings = new_num_position_embeddings + self.encoder.resize_position_embeddings(new_num_position_embeddings) + self.decoder.resize_position_embeddings(new_num_position_embeddings) + + def get_position_embeddings(self) -> Tuple[nn.Embedding]: + """ + Returns the position embeddings matrix + """ + return (self.encoder.get_position_embeddings(), self.decoder.get_position_embeddings()) + + @add_start_docstrings_to_model_forward(PEGASUS_X_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.Tensor] = None, + decoder_attention_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, + past_key_values: Optional[Tuple[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + decoder_inputs_embeds: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, Seq2SeqModelOutput]: + r""" + Returns: + + Example: + + ```python + >>> from transformers import PegasusTokenizer, PegasusModel + + >>> tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-x-large") + >>> model = PegasusModel.from_pretrained("google/pegasus-x-large") + + >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt") + >>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt") + >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids) + + >>> last_hidden_states = outputs.last_hidden_state + >>> list(last_hidden_states.shape) + [1, 4, 1024] + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return Seq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings("The PEGASUS-X for conditional generation (e.g. summarization).", PEGASUS_X_START_DOCSTRING) +class PegasusXForConditionalGeneration(PegasusXPreTrainedModel): + base_model_prefix = "model" + _keys_to_ignore_on_load_missing = [ + r"encoder.version", + r"decoder.version", + r"lm_head.weight", + r"embed_positions.weight", + ] + + def __init__(self, config: PegasusXConfig): + super().__init__(config) + self.model = PegasusXModel(config) + self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.model.get_encoder() + + def get_decoder(self): + return self.model.get_decoder() + + def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding: + new_embeddings = super().resize_token_embeddings(new_num_tokens) + return new_embeddings + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def resize_position_embeddings(self, new_num_position_embeddings: int): + """ + Resizes position embeddings matrix of the model if `new_num_position_embeddings != + config.max_position_embeddings`. + + Arguments: + new_num_position_embeddings (`int`): + The number of new position embeddings. If position embeddings are learned, increasing the size will add + newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If + position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will + add correct vectors at the end following the position encoding algorithm, whereas reducing the size + will remove vectors from the end. + """ + self.config.max_position_embeddings = new_num_position_embeddings + self.model.encoder.resize_position_embeddings(new_num_position_embeddings) + self.model.decoder.resize_position_embeddings(new_num_position_embeddings) + + def get_position_embeddings(self) -> Tuple[nn.Embedding]: + """ + Returns the position embeddings matrix + """ + return (self.model.encoder.get_position_embeddings(), self.model.decoder.get_position_embeddings()) + + @add_start_docstrings_to_model_forward(PEGASUS_X_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + @add_end_docstrings(PEGASUS_X_GENERATION_EXAMPLE) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.Tensor] = None, + decoder_attention_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, + past_key_values: Optional[Tuple[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + decoder_inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, Seq2SeqLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None: + if use_cache: + logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") + use_cache = False + if decoder_input_ids is None: + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + encoder_outputs=encoder_outputs, + decoder_attention_mask=decoder_attention_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + lm_logits = self.lm_head(outputs[0]) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return Seq2SeqLMOutput( + loss=masked_lm_loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + def prepare_inputs_for_generation( + self, decoder_input_ids, past=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs + ): + # cut decoder_input_ids if past is used + if past is not None: + decoder_input_ids = decoder_input_ids[:, -1:] + + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): + return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) + + @staticmethod + def _reorder_cache(past, beam_idx): + reordered_past = () + for layer_past in past: + # cached cross_attention states don't have to be reordered -> they are always the same + reordered_past += ( + tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], + ) + return reordered_past + + +# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->PegasusX +class PegasusXDecoderWrapper(PegasusXPreTrainedModel): + """ + This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is + used in combination with the [`EncoderDecoderModel`] framework. + """ + + def __init__(self, config): + super().__init__(config) + self.decoder = PegasusXDecoder(config) + + def forward(self, *args, **kwargs): + return self.decoder(*args, **kwargs) diff --git a/src/transformers/utils/dummy_pt_objects.py b/src/transformers/utils/dummy_pt_objects.py index 96a93ecae942a..1ef8eaf3e9452 100644 --- a/src/transformers/utils/dummy_pt_objects.py +++ b/src/transformers/utils/dummy_pt_objects.py @@ -3580,6 +3580,30 @@ def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) +PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST = None + + +class PegasusXForConditionalGeneration(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + +class PegasusXModel(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + +class PegasusXPreTrainedModel(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST = None diff --git a/tests/models/pegasus_x/__init__.py b/tests/models/pegasus_x/__init__.py new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/tests/models/pegasus_x/test_modeling_pegasus_x.py b/tests/models/pegasus_x/test_modeling_pegasus_x.py new file mode 100644 index 0000000000000..17518ebe993dd --- /dev/null +++ b/tests/models/pegasus_x/test_modeling_pegasus_x.py @@ -0,0 +1,852 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Testing suite for the PyTorch PEGASUS-X model. """ + + +import copy +import math +import tempfile +import unittest + +from transformers import is_torch_available +from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device +from transformers.utils import cached_property + +from ...generation.test_generation_utils import GenerationTesterMixin +from ...test_configuration_common import ConfigTester +from ...test_modeling_common import ModelTesterMixin, ids_tensor + + +if is_torch_available(): + import torch + + from transformers import PegasusTokenizer, PegasusXConfig, PegasusXForConditionalGeneration, PegasusXModel + from transformers.models.pegasus_x.modeling_pegasus_x import PegasusXDecoder, PegasusXEncoder + + +def prepare_pegasus_x_inputs_dict( + config, + input_ids, + decoder_input_ids, + attention_mask=None, + decoder_attention_mask=None, +): + if attention_mask is None: + attention_mask = input_ids.ne(config.pad_token_id) + if decoder_attention_mask is None: + decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) + return { + "input_ids": input_ids, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "decoder_attention_mask": attention_mask, + } + + +@require_torch +class PegasusXModelTester: + def __init__( + self, + parent, + batch_size=13, + seq_length=7, + is_training=True, + use_labels=False, + vocab_size=99, + hidden_size=16, + num_hidden_layers=2, + num_attention_heads=4, + intermediate_size=4, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=20, + eos_token_id=2, + pad_token_id=1, + bos_token_id=0, + ): + self.parent = parent + self.batch_size = batch_size + self.seq_length = seq_length + self.is_training = is_training + self.use_labels = use_labels + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.eos_token_id = eos_token_id + self.pad_token_id = pad_token_id + self.bos_token_id = bos_token_id + + def prepare_config_and_inputs(self): + input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( + 3, + ) + input_ids[:, -1] = self.eos_token_id # Eos Token + + decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) + + config = PegasusXConfig( + vocab_size=self.vocab_size, + d_model=self.hidden_size, + encoder_layers=self.num_hidden_layers, + decoder_layers=self.num_hidden_layers, + encoder_attention_heads=self.num_attention_heads, + decoder_attention_heads=self.num_attention_heads, + encoder_ffn_dim=self.intermediate_size, + decoder_ffn_dim=self.intermediate_size, + dropout=self.hidden_dropout_prob, + attention_dropout=self.attention_probs_dropout_prob, + max_position_embeddings=self.max_position_embeddings, + eos_token_id=self.eos_token_id, + bos_token_id=self.bos_token_id, + pad_token_id=self.pad_token_id, + stagger_local_blocks=False, + ) + inputs_dict = prepare_pegasus_x_inputs_dict(config, input_ids, decoder_input_ids) + return config, inputs_dict + + def prepare_config_and_inputs_for_common(self): + config, inputs_dict = self.prepare_config_and_inputs() + return config, inputs_dict + + def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): + model = PegasusXModel(config=config).get_decoder().to(torch_device).eval() + input_ids = inputs_dict["input_ids"] + attention_mask = inputs_dict["attention_mask"] + + # first forward pass + outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) + + output, past_key_values = outputs.to_tuple() + + # create hypothetical multiple next token and extent to next_input_ids + next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) + next_attn_mask = ids_tensor((self.batch_size, 3), 2) + + # append to next input_ids and + next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) + next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) + + output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] + output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ + "last_hidden_state" + ] + + # select random slice + random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() + output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() + output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() + + self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) + + # test that outputs are equal for slice + self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2)) + + def check_encoder_decoder_model_standalone(self, config, inputs_dict): + model = PegasusXModel(config=config).to(torch_device).eval() + outputs = model(**inputs_dict) + + encoder_last_hidden_state = outputs.encoder_last_hidden_state + last_hidden_state = outputs.last_hidden_state + + with tempfile.TemporaryDirectory() as tmpdirname: + encoder = model.get_encoder() + encoder.save_pretrained(tmpdirname) + encoder = PegasusXEncoder.from_pretrained(tmpdirname).to(torch_device) + + encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ + 0 + ] + + self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) + + with tempfile.TemporaryDirectory() as tmpdirname: + decoder = model.get_decoder() + decoder.save_pretrained(tmpdirname) + decoder = PegasusXDecoder.from_pretrained(tmpdirname).to(torch_device) + + last_hidden_state_2 = decoder( + input_ids=inputs_dict["decoder_input_ids"], + attention_mask=inputs_dict["decoder_attention_mask"], + encoder_hidden_states=encoder_last_hidden_state, + encoder_attention_mask=inputs_dict["attention_mask"], + )[0] + + self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) + + +@require_torch +class PegasusXModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): + all_model_classes = (PegasusXModel, PegasusXForConditionalGeneration) if is_torch_available() else () + all_generative_model_classes = (PegasusXForConditionalGeneration,) if is_torch_available() else () + is_encoder_decoder = True + test_pruning = False + test_head_masking = False + test_missing_keys = False + + def setUp(self): + self.model_tester = PegasusXModelTester(self) + self.config_tester = ConfigTester(self, config_class=PegasusXConfig) + + def test_config(self): + self.config_tester.run_common_tests() + + def test_save_load_strict(self): + config, inputs_dict = self.model_tester.prepare_config_and_inputs() + for model_class in self.all_model_classes: + model = model_class(config) + + with tempfile.TemporaryDirectory() as tmpdirname: + model.save_pretrained(tmpdirname) + model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) + self.assertEqual(info["missing_keys"], []) + + def test_decoder_model_past_with_large_inputs(self): + config_and_inputs = self.model_tester.prepare_config_and_inputs() + self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) + + def test_encoder_decoder_model_standalone(self): + config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() + self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) + + def test_inputs_embeds(self): + config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() + + for model_class in (PegasusXModel, PegasusXForConditionalGeneration): + model = model_class(config) + model.to(torch_device) + model.eval() + + inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) + + if not self.is_encoder_decoder: + input_ids = inputs["input_ids"] + del inputs["input_ids"] + else: + encoder_input_ids = inputs["input_ids"] + decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) + del inputs["input_ids"] + inputs.pop("decoder_input_ids", None) + + wte = model.get_input_embeddings() + if not self.is_encoder_decoder: + inputs["inputs_embeds"] = wte(input_ids) + else: + inputs["inputs_embeds"] = wte(encoder_input_ids) + inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) + + with torch.no_grad(): + model(**inputs)[0] + + def test_generate_fp16(self): + config, input_dict = self.model_tester.prepare_config_and_inputs() + input_ids = input_dict["input_ids"] + attention_mask = input_ids.ne(1).to(torch_device) + model = PegasusXForConditionalGeneration(config).eval().to(torch_device) + if torch_device == "cuda": + model.half() + model.generate(input_ids, attention_mask=attention_mask) + model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) + + def test_attention_outputs(self): + config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() + config.return_dict = True + + seq_len = getattr(self.model_tester, "seq_length", None) + decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) + encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) + decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) + encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) + chunk_length = getattr(self.model_tester, "chunk_length", None) + if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): + encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes + + for model_class in self.all_model_classes: + inputs_dict["output_attentions"] = True + inputs_dict["output_hidden_states"] = False + config.return_dict = True + model = model_class(config) + model.to(torch_device) + model.eval() + with torch.no_grad(): + outputs = model(**self._prepare_for_class(inputs_dict, model_class)) + attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions + self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) + + # check that output_attentions also work using config + del inputs_dict["output_attentions"] + config.output_attentions = True + model = model_class(config) + model.to(torch_device) + model.eval() + with torch.no_grad(): + outputs = model(**self._prepare_for_class(inputs_dict, model_class)) + attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions + self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) + + self.assertListEqual( + list(attentions[0]["local"].shape[-4:]), + [ + self.model_tester.num_attention_heads, + math.ceil(encoder_seq_length / model.config.block_size), + model.config.block_size, + model.config.block_size + model.config.num_global_tokens, + ], + ) + out_len = len(outputs) + + if self.is_encoder_decoder: + correct_outlen = 5 + + # loss is at first position + if "labels" in inputs_dict: + correct_outlen += 1 # loss is added to beginning + if "past_key_values" in outputs: + correct_outlen += 1 # past_key_values have been returned + + self.assertEqual(out_len, correct_outlen) + + # decoder attentions + decoder_attentions = outputs.decoder_attentions + self.assertIsInstance(decoder_attentions, (list, tuple)) + self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) + self.assertListEqual( + list(decoder_attentions[0].shape[-3:]), + [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], + ) + + # cross attentions + cross_attentions = outputs.cross_attentions + self.assertIsInstance(cross_attentions, (list, tuple)) + self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) + self.assertListEqual( + list(cross_attentions[0].shape[-3:]), + [ + self.model_tester.num_attention_heads, + decoder_seq_length, + encoder_key_length, + ], + ) + + # Check attention is always last and order is fine + inputs_dict["output_attentions"] = True + inputs_dict["output_hidden_states"] = True + model = model_class(config) + model.to(torch_device) + model.eval() + with torch.no_grad(): + outputs = model(**self._prepare_for_class(inputs_dict, model_class)) + + if hasattr(self.model_tester, "num_hidden_states_types"): + added_hidden_states = self.model_tester.num_hidden_states_types + elif self.is_encoder_decoder: + added_hidden_states = 2 + else: + added_hidden_states = 1 + self.assertEqual(out_len + added_hidden_states, len(outputs)) + + self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions + + self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) + self.assertListEqual( + list(self_attentions[0]["local"].shape[-4:]), + [ + self.model_tester.num_attention_heads, + math.ceil(encoder_seq_length / model.config.block_size), + model.config.block_size, + model.config.block_size + model.config.num_global_tokens, + ], + ) + + def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length): + encoder_expected_shape = ( + batch_size, + config.num_attention_heads, + math.ceil(seq_length / config.block_size), + config.block_size, + config.block_size + config.num_global_tokens, + ) + self.assertIsInstance(attentions, tuple) + self.assertListEqual( + [layer_attentions["local"].shape for layer_attentions in attentions], + [encoder_expected_shape] * len(attentions), + ) + + def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length): + encoder_expected_shape = (batch_size, self.round_up(seq_length, config.block_size), config.hidden_size) + self.assertIsInstance(hidden_states, tuple) + # Only the last layer will have the hidden states truncated back to token level + self.assertListEqual( + [layer_hidden_states.shape for layer_hidden_states in hidden_states[:-1]], + [encoder_expected_shape] * (len(hidden_states) - 1), + ) + # Only the last layer will have the hidden states truncated back to token level + self.assertEqual( + hidden_states[-1][0].shape, + (batch_size, seq_length, config.hidden_size), + ) + + def test_hidden_states_output(self): + def _check_hidden_states_output(inputs_dict, config, model_class): + model = model_class(config) + model.to(torch_device) + model.eval() + + with torch.no_grad(): + outputs = model(**self._prepare_for_class(inputs_dict, model_class)) + + hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states + + expected_num_layers = getattr( + self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 + ) + self.assertEqual(len(hidden_states), expected_num_layers) + + if hasattr(self.model_tester, "encoder_seq_length"): + seq_length = self.model_tester.encoder_seq_length + if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1: + seq_length = seq_length * self.model_tester.chunk_length + else: + seq_length = self.model_tester.seq_length + + self.assertListEqual( + list(hidden_states[0].shape[-2:]), + [self.round_up(seq_length, config.block_size), self.model_tester.hidden_size], + ) + + if config.is_encoder_decoder: + hidden_states = outputs.decoder_hidden_states + + self.assertIsInstance(hidden_states, (list, tuple)) + self.assertEqual(len(hidden_states), expected_num_layers) + seq_len = getattr(self.model_tester, "seq_length", None) + decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) + + self.assertListEqual( + list(hidden_states[0].shape[-2:]), + [decoder_seq_length, self.model_tester.hidden_size], + ) + + config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() + + for model_class in self.all_model_classes: + inputs_dict["output_hidden_states"] = True + _check_hidden_states_output(inputs_dict, config, model_class) + + # check that output_hidden_states also work using config + del inputs_dict["output_hidden_states"] + config.output_hidden_states = True + + _check_hidden_states_output(inputs_dict, config, model_class) + + def test_retain_grad_hidden_states_attentions(self): + config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() + config.output_hidden_states = True + config.output_attentions = self.has_attentions + + # no need to test all models as different heads yield the same functionality + model_class = self.all_model_classes[0] + model = model_class(config) + model.to(torch_device) + + inputs = self._prepare_for_class(inputs_dict, model_class) + + outputs = model(**inputs) + + output = outputs[0] + + if config.is_encoder_decoder: + # Seq2Seq models + encoder_hidden_states = outputs.encoder_hidden_states[0] + encoder_hidden_states.retain_grad() + + decoder_hidden_states = outputs.decoder_hidden_states[0] + decoder_hidden_states.retain_grad() + + if self.has_attentions: + encoder_attentions = outputs.encoder_attentions[0] + encoder_attentions["local"].retain_grad() + encoder_attentions["global"].retain_grad() + + decoder_attentions = outputs.decoder_attentions[0] + decoder_attentions.retain_grad() + + cross_attentions = outputs.cross_attentions[0] + cross_attentions.retain_grad() + + output.flatten()[0].backward(retain_graph=True) + + self.assertIsNotNone(encoder_hidden_states.grad) + self.assertIsNotNone(decoder_hidden_states.grad) + + if self.has_attentions: + self.assertIsNotNone(encoder_attentions["local"].grad) + self.assertIsNotNone(encoder_attentions["global"].grad) + self.assertIsNotNone(decoder_attentions.grad) + self.assertIsNotNone(cross_attentions.grad) + else: + # Encoder-/Decoder-only models + hidden_states = outputs.hidden_states[0] + hidden_states.retain_grad() + + if self.has_attentions: + attentions = outputs.attentions[0] + attentions.retain_grad() + + output.flatten()[0].backward(retain_graph=True) + + self.assertIsNotNone(hidden_states.grad) + + if self.has_attentions: + self.assertIsNotNone(attentions.grad) + + @classmethod + def round_up(cls, n, k): + return math.ceil(n / k) * k + + +def assert_tensors_close(a, b, atol=1e-12, prefix=""): + """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" + if a is None and b is None: + return True + try: + if torch.allclose(a, b, atol=atol): + return True + raise + except Exception: + pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() + if a.numel() > 100: + msg = f"tensor values are {pct_different:.1%} percent different." + else: + msg = f"{a} != {b}" + if prefix: + msg = prefix + ": " + msg + raise AssertionError(msg) + + +def _long_tensor(tok_lst): + return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) + + +TOLERANCE = 1e-4 + + +@require_torch +@require_sentencepiece +@require_tokenizers +@slow +class PegasusXModelIntegrationTests(unittest.TestCase): + @cached_property + def default_tokenizer(self): + return PegasusTokenizer.from_pretrained("google/pegasus-x-base") + + def test_inference_no_head(self): + model = PegasusXModel.from_pretrained("pegasus-x-base").to(torch_device) + input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) + decoder_input_ids = _long_tensor([[2, 0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588]]) + inputs_dict = prepare_pegasus_x_inputs_dict(model.config, input_ids, decoder_input_ids) + with torch.no_grad(): + output = model(**inputs_dict)[0] + expected_shape = torch.Size((1, 11, 1024)) + self.assertEqual(output.shape, expected_shape) + # change to expected output here + expected_slice = torch.tensor( + [[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]], device=torch_device + ) + self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE)) + + def test_inference_head(self): + model = PegasusXForConditionalGeneration.from_pretrained("pegasus-x-base").to(torch_device) + + # change to intended input + input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) + decoder_input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) + inputs_dict = prepare_pegasus_x_inputs_dict(model.config, input_ids, decoder_input_ids) + with torch.no_grad(): + output = model(**inputs_dict)[0] + expected_shape = torch.Size((1, 11, model.config.vocab_size)) + self.assertEqual(output.shape, expected_shape) + # change to expected output here + expected_slice = torch.tensor( + [[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]], device=torch_device + ) + self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE)) + + def test_seq_to_seq_generation(self): + hf = PegasusXForConditionalGeneration.from_pretrained("google/pegasus-x-base").to(torch_device) + tok = PegasusTokenizer.from_pretrained("google/pegasus-x-large") + + batch_input = [ + "While large pretrained Transformer models have proven highly capable at tackling natural language tasks," + " handling long sequence inputs continues to be a significant challenge. One such task is long input" + " summarization, where inputs are longer than the maximum input context of most pretrained models. Through" + " an extensive set of experiments, we investigate what model architectural changes and pretraining" + " paradigms can most efficiently adapt a pretrained Transformer for long input summarization. We find that" + " a staggered, block-local Transformer with global encoder tokens strikes a good balance of performance" + " and efficiency, and that an additional pretraining phase on long sequences meaningfully improves" + " downstream summarization performance. Based on our findings, we introduce PEGASUS-X, an extension of the" + " PEGASUS model with additional long input pretraining to handle inputs of up to 16K tokens. PEGASUS-X" + " achieves strong performance on long input summarization tasks comparable with much larger models while" + " adding few additional parameters and not requiring model parallelism to train." + ] + + # The below article tests that we don't add any hypotheses outside of the top n_beams + dct = tok.batch_encode_plus( + batch_input, + max_length=512, + padding="max_length", + truncation_strategy="only_first", + truncation=True, + return_tensors="pt", + ) + + hypotheses_batch = hf.generate( + input_ids=dct["input_ids"].to(torch_device), + attention_mask=dct["attention_mask"].to(torch_device), + num_beams=2, + max_length=32, + ) + + EXPECTED = [ + "we investigate the performance of a new pretrained model for long input summarization. the model" + ] + + generated = tok.batch_decode( + hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True + ) + assert generated == EXPECTED + + +class PegasusXStandaloneDecoderModelTester: + def __init__( + self, + parent, + vocab_size=99, + batch_size=13, + d_model=16, + decoder_seq_length=7, + is_training=True, + is_decoder=True, + use_attention_mask=True, + use_cache=False, + use_labels=True, + decoder_start_token_id=2, + decoder_ffn_dim=32, + decoder_layers=4, + encoder_attention_heads=4, + decoder_attention_heads=4, + max_position_embeddings=30, + is_encoder_decoder=False, + pad_token_id=0, + bos_token_id=1, + eos_token_id=2, + scope=None, + ): + self.parent = parent + self.batch_size = batch_size + self.decoder_seq_length = decoder_seq_length + # For common tests + self.seq_length = self.decoder_seq_length + self.is_training = is_training + self.use_attention_mask = use_attention_mask + self.use_labels = use_labels + + self.vocab_size = vocab_size + self.d_model = d_model + self.hidden_size = d_model + self.num_hidden_layers = decoder_layers + self.decoder_layers = decoder_layers + self.decoder_ffn_dim = decoder_ffn_dim + self.encoder_attention_heads = encoder_attention_heads + self.decoder_attention_heads = decoder_attention_heads + self.num_attention_heads = decoder_attention_heads + self.eos_token_id = eos_token_id + self.bos_token_id = bos_token_id + self.pad_token_id = pad_token_id + self.decoder_start_token_id = decoder_start_token_id + self.use_cache = use_cache + self.max_position_embeddings = max_position_embeddings + self.is_encoder_decoder = is_encoder_decoder + + self.scope = None + self.decoder_key_length = decoder_seq_length + self.base_model_out_len = 2 + self.decoder_attention_idx = 1 + + def prepare_config_and_inputs(self): + input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) + + attention_mask = None + if self.use_attention_mask: + attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) + + lm_labels = None + if self.use_labels: + lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) + + config = PegasusXConfig( + vocab_size=self.vocab_size, + d_model=self.d_model, + decoder_layers=self.decoder_layers, + decoder_ffn_dim=self.decoder_ffn_dim, + encoder_attention_heads=self.encoder_attention_heads, + decoder_attention_heads=self.decoder_attention_heads, + eos_token_id=self.eos_token_id, + bos_token_id=self.bos_token_id, + use_cache=self.use_cache, + pad_token_id=self.pad_token_id, + decoder_start_token_id=self.decoder_start_token_id, + max_position_embeddings=self.max_position_embeddings, + is_encoder_decoder=self.is_encoder_decoder, + ) + + return ( + config, + input_ids, + attention_mask, + lm_labels, + ) + + def create_and_check_decoder_model_past( + self, + config, + input_ids, + attention_mask, + lm_labels, + ): + config.use_cache = True + model = PegasusXDecoder(config=config).to(torch_device).eval() + # first forward pass + outputs = model(input_ids, use_cache=True) + outputs_use_cache_conf = model(input_ids) + outputs_no_past = model(input_ids, use_cache=False) + + self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) + self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) + + past_key_values = outputs["past_key_values"] + + # create hypothetical next token and extent to next_input_ids + next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) + + # append to next input_ids and + next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) + + output_from_no_past = model(next_input_ids)["last_hidden_state"] + output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] + + # select random slice + random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() + output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() + output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() + + # test that outputs are equal for slice + assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) + + def create_and_check_decoder_model_attention_mask_past( + self, + config, + input_ids, + attention_mask, + lm_labels, + ): + model = PegasusXDecoder(config=config).to(torch_device).eval() + + # create attention mask + attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) + + half_seq_length = input_ids.shape[-1] // 2 + attn_mask[:, half_seq_length:] = 0 + + # first forward pass + past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] + + # create hypothetical next token and extent to next_input_ids + next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) + + # change a random masked slice from input_ids + random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 + random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) + input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens + + # append to next input_ids and attn_mask + next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) + attn_mask = torch.cat( + [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], + dim=1, + ) + + # get two different outputs + output_from_no_past = model(next_input_ids)["last_hidden_state"] + output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] + + # select random slice + random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() + output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() + output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() + + # test that outputs are equal for slice + assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2) + + def prepare_config_and_inputs_for_common(self): + config_and_inputs = self.prepare_config_and_inputs() + ( + config, + input_ids, + attention_mask, + lm_labels, + ) = config_and_inputs + + inputs_dict = { + "input_ids": input_ids, + "attention_mask": attention_mask, + } + return config, inputs_dict + + +@require_torch +class PegasusXStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): + all_model_classes = (PegasusXDecoder,) if is_torch_available() else () + all_generative_model_classes = () + test_pruning = False + is_encoder_decoder = False + test_head_masking = False + + def setUp( + self, + ): + self.model_tester = PegasusXStandaloneDecoderModelTester(self, is_training=False) + self.config_tester = ConfigTester(self, config_class=PegasusXConfig) + + def test_config(self): + self.config_tester.run_common_tests() + + def test_decoder_model_past(self): + config_and_inputs = self.model_tester.prepare_config_and_inputs() + self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) + + def test_decoder_model_attn_mask_past(self): + config_and_inputs = self.model_tester.prepare_config_and_inputs() + self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) + + def test_retain_grad_hidden_states_attentions(self): + # decoder cannot keep gradients + return diff --git a/utils/check_repo.py b/utils/check_repo.py index 254467113d6cb..3fff7aed73b3d 100644 --- a/utils/check_repo.py +++ b/utils/check_repo.py @@ -82,6 +82,9 @@ "MvpEncoder", # Building part of bigger (tested) model. "PegasusEncoder", # Building part of bigger (tested) model. "PegasusDecoderWrapper", # Building part of bigger (tested) model. + "PegasusXEncoder", # Building part of bigger (tested) model. + "PegasusXDecoder", # Building part of bigger (tested) model. + "PegasusXDecoderWrapper", # Building part of bigger (tested) model. "DPREncoder", # Building part of bigger (tested) model. "ProphetNetDecoderWrapper", # Building part of bigger (tested) model. "RealmBertModel", # Building part of bigger (tested) model. @@ -125,6 +128,12 @@ # should **not** be the rule. IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [ # models to ignore for model xxx mapping + "PegasusXEncoder", + "PegasusXDecoder", + "PegasusXDecoderWrapper", + "PegasusXEncoder", + "PegasusXDecoder", + "PegasusXDecoderWrapper", "DPTForDepthEstimation", "DecisionTransformerGPT2Model", "GLPNForDepthEstimation",