diff --git a/unused/testdata/src/pointers/pointers.go b/unused/testdata/src/pointers/pointers.go new file mode 100644 index 00000000..104ebcce --- /dev/null +++ b/unused/testdata/src/pointers/pointers.go @@ -0,0 +1,17 @@ +package baz + +import "fmt" + +type Foo interface { // used + bar() // used +} + +func Bar(f Foo) { // used + f.bar() +} + +type Buzz struct{} // used + +func (b *Buzz) bar() { // used + fmt.Println("foo bar buzz") +} diff --git a/unused/typemap/example_test.go b/unused/typemap/example_test.go new file mode 100644 index 00000000..1627ef78 --- /dev/null +++ b/unused/typemap/example_test.go @@ -0,0 +1,67 @@ +// Copyright 2014 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package typemap_test + +import ( + "fmt" + "go/ast" + "go/parser" + "go/token" + "go/types" + "sort" + + "honnef.co/go/tools/go/types/typeutil" +) + +func ExampleMap() { + const source = `package P + +var X []string +var Y []string + +const p, q = 1.0, 2.0 + +func f(offset int32) (value byte, ok bool) +func g(rune) (uint8, bool) +` + + // Parse and type-check the package. + fset := token.NewFileSet() + f, err := parser.ParseFile(fset, "P.go", source, 0) + if err != nil { + panic(err) + } + pkg, err := new(types.Config).Check("P", fset, []*ast.File{f}, nil) + if err != nil { + panic(err) + } + + scope := pkg.Scope() + + // Group names of package-level objects by their type. + var namesByType typeutil.Map // value is []string + for _, name := range scope.Names() { + T := scope.Lookup(name).Type() + + names, _ := namesByType.At(T).([]string) + names = append(names, name) + namesByType.Set(T, names) + } + + // Format, sort, and print the map entries. + var lines []string + namesByType.Iterate(func(T types.Type, names interface{}) { + lines = append(lines, fmt.Sprintf("%s %s", names, T)) + }) + sort.Strings(lines) + for _, line := range lines { + fmt.Println(line) + } + + // Output: + // [X Y] []string + // [f g] func(offset int32) (value byte, ok bool) + // [p q] untyped float +} diff --git a/unused/typemap/identical.go b/unused/typemap/identical.go new file mode 100644 index 00000000..248f3e17 --- /dev/null +++ b/unused/typemap/identical.go @@ -0,0 +1,149 @@ +package typemap + +import ( + "go/types" +) + +// Unlike types.Identical, receivers of Signature types are not ignored. +// Unlike types.Identical, interfaces are compared via pointer equality (except for the empty interface, which gets deduplicated). +// Unlike types.Identical, structs are compared via pointer equality. +func identical0(x, y types.Type) bool { + if x == y { + return true + } + + switch x := x.(type) { + case *types.Basic: + // Basic types are singletons except for the rune and byte + // aliases, thus we cannot solely rely on the x == y check + // above. See also comment in TypeName.IsAlias. + if y, ok := y.(*types.Basic); ok { + return x.Kind() == y.Kind() + } + + case *types.Array: + // Two array types are identical if they have identical element types + // and the same array length. + if y, ok := y.(*types.Array); ok { + // If one or both array lengths are unknown (< 0) due to some error, + // assume they are the same to avoid spurious follow-on errors. + return (x.Len() < 0 || y.Len() < 0 || x.Len() == y.Len()) && identical0(x.Elem(), y.Elem()) + } + + case *types.Slice: + // Two slice types are identical if they have identical element types. + if y, ok := y.(*types.Slice); ok { + return identical0(x.Elem(), y.Elem()) + } + + case *types.Struct: + if y, ok := y.(*types.Struct); ok { + return x == y + } + + case *types.Pointer: + // Two pointer types are identical if they have identical base types. + if y, ok := y.(*types.Pointer); ok { + return identical0(x.Elem(), y.Elem()) + } + + case *types.Tuple: + // Two tuples types are identical if they have the same number of elements + // and corresponding elements have identical types. + if y, ok := y.(*types.Tuple); ok { + if x.Len() == y.Len() { + if x != nil { + for i := 0; i < x.Len(); i++ { + v := x.At(i) + w := y.At(i) + if !identical0(v.Type(), w.Type()) { + return false + } + } + } + return true + } + } + + case *types.Signature: + // Two function types are identical if they have the same number of parameters + // and result values, corresponding parameter and result types are identical, + // and either both functions are variadic or neither is. Parameter and result + // names are not required to match. + if y, ok := y.(*types.Signature); ok { + + return x.Variadic() == y.Variadic() && + identical0(x.Params(), y.Params()) && + identical0(x.Results(), y.Results()) && + (x.Recv() != nil && y.Recv() != nil && identical0(x.Recv().Type(), y.Recv().Type()) || x.Recv() == nil && y.Recv() == nil) + } + + case *types.Interface: + // The issue with interfaces, typeutil.Map and types.Identical + // + // types.Identical, when comparing two interfaces, only looks at the set + // of all methods, not differentiating between implicit (embedded) and + // explicit methods. + // + // When we see the following two types, in source order + // + // type I1 interface { foo() } + // type I2 interface { I1 } + // + // then we will first correctly process I1 and its underlying type. When + // we get to I2, we will see that its underlying type is identical to + // that of I1 and not process it again. This, however, means that we will + // not record the fact that I2 embeds I1. If only I2 is reachable via the + // graph root, then I1 will not be considered used. + // + // We choose to be lazy and compare interfaces by their + // pointers. This will obviously miss identical interfaces, + // but this only has a runtime cost, it doesn't affect + // correctness. + if y, ok := y.(*types.Interface); ok { + if x.NumEmbeddeds() == 0 && + y.NumEmbeddeds() == 0 && + x.NumMethods() == 0 && + y.NumMethods() == 0 { + // all truly empty interfaces are the same + return true + } + return x == y + } + + case *types.Map: + // Two map types are identical if they have identical key and value types. + if y, ok := y.(*types.Map); ok { + return identical0(x.Key(), y.Key()) && identical0(x.Elem(), y.Elem()) + } + + case *types.Chan: + // Two channel types are identical if they have identical value types + // and the same direction. + if y, ok := y.(*types.Chan); ok { + return x.Dir() == y.Dir() && identical0(x.Elem(), y.Elem()) + } + + case *types.Named: + // Two named types are identical if their type names originate + // in the same type declaration. + if y, ok := y.(*types.Named); ok { + return x.Obj() == y.Obj() + } + + case nil: + + default: + panic("unreachable") + } + + return false +} + +// Identical reports whether x and y are identical types. +// Unlike types.Identical, receivers of Signature types are not ignored. +// Unlike types.Identical, interfaces are compared via pointer equality (except for the empty interface, which gets deduplicated). +// Unlike types.Identical, structs are compared via pointer equality. +func Identical(x, y types.Type) (ret bool) { + return identical0(x, y) +} diff --git a/unused/typemap/map.go b/unused/typemap/map.go new file mode 100644 index 00000000..d9961cab --- /dev/null +++ b/unused/typemap/map.go @@ -0,0 +1,318 @@ +// Copyright 2014 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package typemap defines Map, a mapping from types.Type to interface{} values. +package typemap + +import ( + "bytes" + "fmt" + "go/types" + "reflect" +) + +// Map is a hash-table-based mapping from types (types.Type) to +// arbitrary interface{} values. The concrete types that implement +// the Type interface are pointers. Since they are not canonicalized, +// == cannot be used to check for equivalence, and thus we cannot +// simply use a Go map. +// +// Just as with map[K]V, a nil *Map is a valid empty map. +// +// Not thread-safe. +// +// This fork handles Signatures correctly, respecting method +// receivers. Furthermore, it doesn't deduplicate interfaces or +// structs. Interfaces aren't deduplicated as not to conflate implicit +// and explicit methods. Structs aren't deduplicated because we track +// fields of each type separately. +// +type Map struct { + hasher Hasher // shared by many Maps + table map[uint32][]entry // maps hash to bucket; entry.key==nil means unused + length int // number of map entries +} + +// entry is an entry (key/value association) in a hash bucket. +type entry struct { + key types.Type + value interface{} +} + +// SetHasher sets the hasher used by Map. +// +// All Hashers are functionally equivalent but contain internal state +// used to cache the results of hashing previously seen types. +// +// A single Hasher created by MakeHasher() may be shared among many +// Maps. This is recommended if the instances have many keys in +// common, as it will amortize the cost of hash computation. +// +// A Hasher may grow without bound as new types are seen. Even when a +// type is deleted from the map, the Hasher never shrinks, since other +// types in the map may reference the deleted type indirectly. +// +// Hashers are not thread-safe, and read-only operations such as +// Map.Lookup require updates to the hasher, so a full Mutex lock (not a +// read-lock) is require around all Map operations if a shared +// hasher is accessed from multiple threads. +// +// If SetHasher is not called, the Map will create a private hasher at +// the first call to Insert. +// +func (m *Map) SetHasher(hasher Hasher) { + m.hasher = hasher +} + +// Delete removes the entry with the given key, if any. +// It returns true if the entry was found. +// +func (m *Map) Delete(key types.Type) bool { + if m != nil && m.table != nil { + hash := m.hasher.Hash(key) + bucket := m.table[hash] + for i, e := range bucket { + if e.key != nil && Identical(key, e.key) { + // We can't compact the bucket as it + // would disturb iterators. + bucket[i] = entry{} + m.length-- + return true + } + } + } + return false +} + +// At returns the map entry for the given key. +// The result is nil if the entry is not present. +// +func (m *Map) At(key types.Type) interface{} { + if m != nil && m.table != nil { + for _, e := range m.table[m.hasher.Hash(key)] { + if e.key != nil && Identical(key, e.key) { + return e.value + } + } + } + return nil +} + +// Set sets the map entry for key to val, +// and returns the previous entry, if any. +func (m *Map) Set(key types.Type, value interface{}) (prev interface{}) { + if m.table != nil { + hash := m.hasher.Hash(key) + bucket := m.table[hash] + var hole *entry + for i, e := range bucket { + if e.key == nil { + hole = &bucket[i] + } else if Identical(key, e.key) { + prev = e.value + bucket[i].value = value + return + } + } + + if hole != nil { + *hole = entry{key, value} // overwrite deleted entry + } else { + m.table[hash] = append(bucket, entry{key, value}) + } + } else { + if m.hasher.memo == nil { + m.hasher = MakeHasher() + } + hash := m.hasher.Hash(key) + m.table = map[uint32][]entry{hash: {entry{key, value}}} + } + + m.length++ + return +} + +// Len returns the number of map entries. +func (m *Map) Len() int { + if m != nil { + return m.length + } + return 0 +} + +// Iterate calls function f on each entry in the map in unspecified order. +// +// If f should mutate the map, Iterate provides the same guarantees as +// Go maps: if f deletes a map entry that Iterate has not yet reached, +// f will not be invoked for it, but if f inserts a map entry that +// Iterate has not yet reached, whether or not f will be invoked for +// it is unspecified. +// +func (m *Map) Iterate(f func(key types.Type, value interface{})) { + if m != nil { + for _, bucket := range m.table { + for _, e := range bucket { + if e.key != nil { + f(e.key, e.value) + } + } + } + } +} + +// Keys returns a new slice containing the set of map keys. +// The order is unspecified. +func (m *Map) Keys() []types.Type { + keys := make([]types.Type, 0, m.Len()) + m.Iterate(func(key types.Type, _ interface{}) { + keys = append(keys, key) + }) + return keys +} + +func (m *Map) toString(values bool) string { + if m == nil { + return "{}" + } + var buf bytes.Buffer + fmt.Fprint(&buf, "{") + sep := "" + m.Iterate(func(key types.Type, value interface{}) { + fmt.Fprint(&buf, sep) + sep = ", " + fmt.Fprint(&buf, key) + if values { + fmt.Fprintf(&buf, ": %q", value) + } + }) + fmt.Fprint(&buf, "}") + return buf.String() +} + +// String returns a string representation of the map's entries. +// Values are printed using fmt.Sprintf("%v", v). +// Order is unspecified. +// +func (m *Map) String() string { + return m.toString(true) +} + +// KeysString returns a string representation of the map's key set. +// Order is unspecified. +// +func (m *Map) KeysString() string { + return m.toString(false) +} + +//////////////////////////////////////////////////////////////////////// +// Hasher + +// A Hasher maps each type to its hash value. +// For efficiency, a hasher uses memoization; thus its memory +// footprint grows monotonically over time. +// Hashers are not thread-safe. +// Hashers have reference semantics. +// Call MakeHasher to create a Hasher. +type Hasher struct { + memo map[types.Type]uint32 +} + +// MakeHasher returns a new Hasher instance. +func MakeHasher() Hasher { + return Hasher{make(map[types.Type]uint32)} +} + +// Hash computes a hash value for the given type t such that +// Identical(t, t') => Hash(t) == Hash(t'). +func (h Hasher) Hash(t types.Type) uint32 { + hash, ok := h.memo[t] + if !ok { + hash = h.hashFor(t) + h.memo[t] = hash + } + return hash +} + +// hashString computes the Fowler–Noll–Vo hash of s. +func hashString(s string) uint32 { + var h uint32 + for i := 0; i < len(s); i++ { + h ^= uint32(s[i]) + h *= 16777619 + } + return h +} + +// hashFor computes the hash of t. +func (h Hasher) hashFor(t types.Type) uint32 { + // See Identical for rationale. + switch t := t.(type) { + case *types.Basic: + return uint32(t.Kind()) + + case *types.Array: + return 9043 + 2*uint32(t.Len()) + 3*h.Hash(t.Elem()) + + case *types.Slice: + return 9049 + 2*h.Hash(t.Elem()) + + case *types.Struct: + var hash uint32 = 9059 + for i, n := 0, t.NumFields(); i < n; i++ { + f := t.Field(i) + if f.Anonymous() { + hash += 8861 + } + hash += hashString(t.Tag(i)) + hash += hashString(f.Name()) // (ignore f.Pkg) + hash += h.Hash(f.Type()) + } + return hash + + case *types.Pointer: + return 9067 + 2*h.Hash(t.Elem()) + + case *types.Signature: + var hash uint32 = 9091 + if t.Variadic() { + hash *= 8863 + } + return hash + 3*h.hashTuple(t.Params()) + 5*h.hashTuple(t.Results()) + + case *types.Interface: + var hash uint32 = 9103 + for i, n := 0, t.NumMethods(); i < n; i++ { + // See go/types.identicalMethods for rationale. + // Method order is not significant. + // Ignore m.Pkg(). + m := t.Method(i) + hash += 3*hashString(m.Name()) + 5*h.Hash(m.Type()) + } + return hash + + case *types.Map: + return 9109 + 2*h.Hash(t.Key()) + 3*h.Hash(t.Elem()) + + case *types.Chan: + return 9127 + 2*uint32(t.Dir()) + 3*h.Hash(t.Elem()) + + case *types.Named: + // Not safe with a copying GC; objects may move. + return uint32(reflect.ValueOf(t.Obj()).Pointer()) + + case *types.Tuple: + return h.hashTuple(t) + } + panic(t) +} + +func (h Hasher) hashTuple(tuple *types.Tuple) uint32 { + // See go/types.identicalTypes for rationale. + n := tuple.Len() + var hash uint32 = 9137 + 2*uint32(n) + for i := 0; i < n; i++ { + hash += 3 * h.Hash(tuple.At(i).Type()) + } + return hash +} diff --git a/unused/typemap/map_test.go b/unused/typemap/map_test.go new file mode 100644 index 00000000..8ab48e3e --- /dev/null +++ b/unused/typemap/map_test.go @@ -0,0 +1,174 @@ +// Copyright 2014 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package typemap_test + +// TODO(adonovan): +// - test use of explicit hasher across two maps. +// - test hashcodes are consistent with equals for a range of types +// (e.g. all types generated by type-checking some body of real code). + +import ( + "go/types" + "testing" + + "honnef.co/go/tools/unused/typemap" +) + +var ( + tStr = types.Typ[types.String] // string + tPStr1 = types.NewPointer(tStr) // *string + tPStr2 = types.NewPointer(tStr) // *string, again + tInt = types.Typ[types.Int] // int + tChanInt1 = types.NewChan(types.RecvOnly, tInt) // <-chan int + tChanInt2 = types.NewChan(types.RecvOnly, tInt) // <-chan int, again +) + +func checkEqualButNotIdentical(t *testing.T, x, y types.Type, comment string) { + if !types.Identical(x, y) { + t.Errorf("%s: not equal: %s, %s", comment, x, y) + } + if x == y { + t.Errorf("%s: identical: %v, %v", comment, x, y) + } +} + +func TestAxioms(t *testing.T) { + checkEqualButNotIdentical(t, tPStr1, tPStr2, "tPstr{1,2}") + checkEqualButNotIdentical(t, tChanInt1, tChanInt2, "tChanInt{1,2}") +} + +func TestMap(t *testing.T) { + var tmap *typemap.Map + + // All methods but Set are safe on on (*T)(nil). + _ = tmap.Len() + _ = tmap.At(tPStr1) + _ = tmap.Delete(tPStr1) + _ = tmap.KeysString() + _ = tmap.String() + + tmap = new(typemap.Map) + + // Length of empty map. + if l := tmap.Len(); l != 0 { + t.Errorf("Len() on empty Map: got %d, want 0", l) + } + // At of missing key. + if v := tmap.At(tPStr1); v != nil { + t.Errorf("At() on empty Map: got %v, want nil", v) + } + // Deletion of missing key. + if tmap.Delete(tPStr1) { + t.Errorf("Delete() on empty Map: got true, want false") + } + // Set of new key. + if prev := tmap.Set(tPStr1, "*string"); prev != nil { + t.Errorf("Set() on empty Map returned non-nil previous value %s", prev) + } + + // Now: {*string: "*string"} + + // Length of non-empty map. + if l := tmap.Len(); l != 1 { + t.Errorf("Len(): got %d, want 1", l) + } + // At via insertion key. + if v := tmap.At(tPStr1); v != "*string" { + t.Errorf("At(): got %q, want \"*string\"", v) + } + // At via equal key. + if v := tmap.At(tPStr2); v != "*string" { + t.Errorf("At(): got %q, want \"*string\"", v) + } + // Iteration over sole entry. + tmap.Iterate(func(key types.Type, value interface{}) { + if key != tPStr1 { + t.Errorf("Iterate: key: got %s, want %s", key, tPStr1) + } + if want := "*string"; value != want { + t.Errorf("Iterate: value: got %s, want %s", value, want) + } + }) + + // Setion with key equal to present one. + if prev := tmap.Set(tPStr2, "*string again"); prev != "*string" { + t.Errorf("Set() previous value: got %s, want \"*string\"", prev) + } + + // Setion of another association. + if prev := tmap.Set(tChanInt1, "<-chan int"); prev != nil { + t.Errorf("Set() previous value: got %s, want nil", prev) + } + + // Now: {*string: "*string again", <-chan int: "<-chan int"} + + want1 := "{*string: \"*string again\", <-chan int: \"<-chan int\"}" + want2 := "{<-chan int: \"<-chan int\", *string: \"*string again\"}" + if s := tmap.String(); s != want1 && s != want2 { + t.Errorf("String(): got %s, want %s", s, want1) + } + + want1 = "{*string, <-chan int}" + want2 = "{<-chan int, *string}" + if s := tmap.KeysString(); s != want1 && s != want2 { + t.Errorf("KeysString(): got %s, want %s", s, want1) + } + + // Keys(). + I := types.Identical + switch k := tmap.Keys(); { + case I(k[0], tChanInt1) && I(k[1], tPStr1): // ok + case I(k[1], tChanInt1) && I(k[0], tPStr1): // ok + default: + t.Errorf("Keys(): got %v, want %s", k, want2) + } + + if l := tmap.Len(); l != 2 { + t.Errorf("Len(): got %d, want 1", l) + } + // At via original key. + if v := tmap.At(tPStr1); v != "*string again" { + t.Errorf("At(): got %q, want \"*string again\"", v) + } + hamming := 1 + tmap.Iterate(func(key types.Type, value interface{}) { + switch { + case I(key, tChanInt1): + hamming *= 2 // ok + case I(key, tPStr1): + hamming *= 3 // ok + } + }) + if hamming != 6 { + t.Errorf("Iterate: hamming: got %d, want %d", hamming, 6) + } + + if v := tmap.At(tChanInt2); v != "<-chan int" { + t.Errorf("At(): got %q, want \"<-chan int\"", v) + } + // Deletion with key equal to present one. + if !tmap.Delete(tChanInt2) { + t.Errorf("Delete() of existing key: got false, want true") + } + + // Now: {*string: "*string again"} + + if l := tmap.Len(); l != 1 { + t.Errorf("Len(): got %d, want 1", l) + } + // Deletion again. + if !tmap.Delete(tPStr2) { + t.Errorf("Delete() of existing key: got false, want true") + } + + // Now: {} + + if l := tmap.Len(); l != 0 { + t.Errorf("Len(): got %d, want %d", l, 0) + } + if s := tmap.String(); s != "{}" { + t.Errorf("Len(): got %q, want %q", s, "") + } +} diff --git a/unused/unused.go b/unused/unused.go index 79769771..b1312bef 100644 --- a/unused/unused.go +++ b/unused/unused.go @@ -17,6 +17,7 @@ import ( "honnef.co/go/tools/go/ir" "honnef.co/go/tools/go/types/typeutil" "honnef.co/go/tools/internal/passes/buildir" + "honnef.co/go/tools/unused/typemap" "golang.org/x/tools/go/analysis" ) @@ -542,9 +543,9 @@ func run(pass *analysis.Pass) (interface{}, error) { for _, v := range g.Nodes { debugNode(v) } - for _, node := range g.TypeNodes { - debugNode(node) - } + g.TypeNodes.Iterate(func(key types.Type, value interface{}) { + debugNode(value.(*node)) + }) debugf("}\n") } @@ -554,9 +555,10 @@ func run(pass *analysis.Pass) (interface{}, error) { func results(g *graph) (used, unused []types.Object) { g.color(g.Root) - for _, node := range g.TypeNodes { + g.TypeNodes.Iterate(func(_ types.Type, value interface{}) { + node := value.(*node) if node.seen { - continue + return } switch obj := node.obj.(type) { case *types.Struct: @@ -573,7 +575,7 @@ func results(g *graph) (used, unused []types.Object) { } } } - } + }) // OPT(dh): can we find meaningful initial capacities for the used and unused slices? @@ -609,9 +611,9 @@ func results(g *graph) (used, unused []types.Object) { type graph struct { Root *node - seenTypes map[types.Type]struct{} + seenTypes typemap.Map - TypeNodes map[types.Type]*node + TypeNodes typemap.Map Nodes map[interface{}]*node // context @@ -622,10 +624,8 @@ type graph struct { func newGraph() *graph { g := &graph{ - Nodes: map[interface{}]*node{}, - seenFns: map[*ir.Function]struct{}{}, - seenTypes: map[types.Type]struct{}{}, - TypeNodes: map[types.Type]*node{}, + Nodes: map[interface{}]*node{}, + seenFns: map[*ir.Function]struct{}{}, } g.Root = g.newNode(nil) return g @@ -676,11 +676,11 @@ func (g *graph) nodeMaybe(obj types.Object) (*node, bool) { func (g *graph) node(obj interface{}) (n *node, new bool) { switch obj := obj.(type) { case types.Type: - if v := g.TypeNodes[obj]; v != nil { - return v, false + if v := g.TypeNodes.At(obj); v != nil { + return v.(*node), false } n = g.newNode(obj) - g.TypeNodes[obj] = n + g.TypeNodes.Set(obj, n) return n, true case types.Object: // OPT(dh): the types.Object and default cases are identical @@ -1120,7 +1120,7 @@ func (g *graph) entry(pkg *pkg) { var ifaces []*types.Interface var notIfaces []types.Type - for t := range g.seenTypes { + g.seenTypes.Iterate(func(t types.Type, _ interface{}) { switch t := t.(type) { case *types.Interface: // OPT(dh): (8.1) we only need interfaces that have unexported methods @@ -1130,7 +1130,7 @@ func (g *graph) entry(pkg *pkg) { notIfaces = append(notIfaces, t) } } - } + }) // (8.0) handle interfaces for _, t := range notIfaces { @@ -1269,7 +1269,7 @@ func (g *graph) function(fn *ir.Function) { } func (g *graph) typ(t types.Type, parent types.Type) { - if _, ok := g.seenTypes[t]; ok { + if g.seenTypes.At(t) != nil { return } @@ -1279,7 +1279,7 @@ func (g *graph) typ(t types.Type, parent types.Type) { } } - g.seenTypes[t] = struct{}{} + g.seenTypes.Set(t, struct{}{}) if isIrrelevant(t) { return } diff --git a/unused/unused_test.go b/unused/unused_test.go index 4b500abf..dfc15e71 100644 --- a/unused/unused_test.go +++ b/unused/unused_test.go @@ -155,6 +155,7 @@ func TestAll(t *testing.T) { "nocopy", "nocopy-main", "pointer-type-embedding", + "pointers", "quiet", "selectors", "switch_interface",